Abstract:
The invention refers to a computer implemented method, a computer system a test machine and a computer program product for executing conditioned and qualified test. An ordering instance may order a set of tests, comprising an initial test and a set of follow-up tests, wherein the execution of each of the follow-up tests is dependent of the result of the respective predecessor test, like the initial test. The conditions for executing the follow-up tests are dynamically definable and are analyzed automatically.
Abstract:
Medical examination and/or treatment system having a catheter (1) with a sensor (3, 4) connected to an image recording system, said sensor being connected to an image processing unit (24, 25) for evaluating the sensor signals recorded in an examination area, a display unit (26) for displaying the images (12) of the image processing unit (24, 25) and a means for detecting the position and/or orientation of the catheter tip, whereby the system can generate three-dimensional images from the two-dimensional images (12) of the image recording system based on the detected position and/or direction of the catheter tip.
Abstract:
In a method or system for minimally-invasive therapy on a patient, a minimally-invasive therapy apparatus is provided. While performing the minimally-invasive therapy on the patient with a minimally-invasive therapy apparatus, the patient is ventilated with a jet ventilator to reduce a magnitude of the patient's breathing and increase a frequency of the patient's breathing.
Abstract:
A method or workflow for heart valve replacement, or more precisely emplacement of a prosthetic heart valve, using minimally invasive procedures includes imaging of the patient's heart during the procedure using a multi-access articulated x-ray imaging robot that allows a radiation detector carried by the robot to be moved in arbitrary paths around a patient in order to generate multiple projection exposures of the relevant region of the patient during the procedure. The imaging system is used to generate two dimensional image data during movement of the catheter and prosthetic heart valve into place and to generate three dimensional image data of the prosthetic heart valve within the patient's heart. The two dimensional image data and the three dimensional image data are registered and superimposed for use in positioning of the prosthetic heart valve. Additional imaging may be performed once the prosthetic heart valve is in position.
Abstract:
The invention relates to a device and a method for a medical intervention on a patient. The device provided for carrying out the method comprises a medical instrument that is to be introduced into a moving body region of the patient, a robot which has a plurality of degrees of freedom of movement and on which the medical instrument can be disposed for guiding, and means for recording the movement of the body region, wherein the medical instrument can be introduced into the body region of the patient by means of the robot taking into account the movement of the body region and guided in the direction of a target tissue in the body of the patient.
Abstract:
An x-ray diagnostics method is specified, in particular for use in angiography and cardiology, by means of which a particularly good image quality can be achieved in an easily manageable manner for the patient (P) and the medical personnel, at the same time as a comparatively low radiation exposure. Furthermore, a specific x-ray device (1) for implementing the method comprising an x-ray emitter (2), an x-ray detector (3) and a control unit (10) is specified to control the x-ray emitter (2). In this way the control unit (10) is allocated an operating element (15), by means of which a control parameter (S) characterizing the image quality, the detector input dose or the contrast noise ratio can be continuously varied, as a function of which a number of recording parameters (U,I,t,F) are set by means of the control device (10).
Abstract:
There is described a radiography device for recording dynamic processes and an associated recording method. The radiography arrangement is used to examine patients using an x-ray source, a digital flat detector with a single shot recording function and an operating console for controlling and recording purposes, with the flat detector also being able to display an image sequence at a rate of up to 5 Hertz, which allows the positioning of the region to be examined or the monitoring of pseudo-interventional interventions.
Abstract:
To increase safety in the event of access to a total system 1; 32 in particular a medical system, with a field 3.1; 33.1 of high magnetic field intensity, a subsystem 5-12; 22-26, in particular with a light barrier 6 and/or a metal detector 5 and/or a door contact 25, is provided as the means for detecting access. According to one embodiment of the invention, the field line pattern and/or the intensity of the magnetic field is graphically represented by means of a luminescent display field 24 located on the floor, in particular made of photodiodes 31.
Abstract:
The invention relates to a medical imaging facility, in particular for producing image recordings in the context of a treatment of cardiac arrhythmias, the medical imaging facility being configured as an integrated facility with at least one computed tomography device configured as a C-arm computed tomography device and configured to produce soft-tissue recordings and at least one image recording element based on intravascular magnetic resonance imaging, the medical imaging facility having at least one common control facility for both image recording methods, being configured for the automatic evaluation and display of at least one image recording of at least one computed tomography facility and/or at least one image recording element based on intravascular magnetic resonance imaging and/or for the display of identified scar tissue and/or regions of impaired and/or increased electrophysiological activity by means of at least one program means in real time.
Abstract:
For an improved method for examining the skin of a proband, in particular as part of a skin cancer screening examination or a skin cancer therapy, it is provided that an epiluminescence microscopy image (B) is first taken of a distinctive skin site and by analysis of the image (B) the skin site is rated as suspect or inconsequential with regard to the presence of a disease. In a further method step it is provided that an image (B′) of a skin site rated as suspect is recorded by means of optical coherence tomography and the diagnosis of disease is verified or refuted on the basis of this image (B′). A device particularly suited to the performance of the method comprises an epiluminescence microscopy device (2) and an optical coherence tomography device (3) together with a common control unit (6).