Abstract:
An in-process magnetic layer having an in-process area dimension is formed with a chemically damaged region at a periphery. At least a portion of the chemically damaged region is transformed to a chemically modified peripheral portion that is non-ferromagnetic. Optionally, the transforming is by oxidation, nitridation or fluorination, or combinations of the same.
Abstract:
A method of forming a magnetic tunnel junction device is disclosed that includes forming a trench in a substrate, the trench including a plurality of sidewalls and a bottom wall. The method includes depositing a first conductive material within the trench proximate to one of the sidewalls and depositing a second conductive material within the trench. The method further includes depositing a material to form a magnetic tunnel junction (MTJ) structure within the trench. The MTJ structure includes a fixed magnetic layer having a magnetic field with a fixed magnetic orientation, a tunnel junction layer, and a free magnetic layer having a magnetic field with a configurable magnetic orientation. The method further includes selectively removing a portion of the MTJ structure to create an opening in the MTJ structure.
Abstract:
An electronic device manufacturing process includes depositing a bottom electrode layer. Then an electronic device is fabricated on the bottom electrode layer. Patterning of the bottom electrode layer is performed after fabricating the electronic device and in a separate process from patterning a top electrode. A first dielectric layer is then deposited on the electronic device and the bottom electrode layer followed by a top electrode layer. The top electrode is then patterned in a separate process from the bottom electrode. Separately patterning the top and bottom electrodes improves yields by reducing voids in the dielectric material between electronic devices. One electronic device the manufacturing process is well-suited for is magnetic tunnel junctions (MTJs).
Abstract:
A method comprises forming a trench in a substrate. The method also comprises depositing a magnetic tunnel junction (MTJ) structure within the trench. The method further comprises planarizing the MTJ.
Abstract:
A large scale memory array includes a uniform pattern of uniformly sized dummy bit cells and active bit cells. Sub-arrays within the large scale memory array are separated by the dummy bit cells. Signal distribution circuitry is formed with a width or height corresponding to the width or height of the dummy bit cells so that the signal distribution circuitry occupies the same footprint as the dummy bit cells without disrupting the uniform pattern across the large scale array. Edge dummy cells of a similar size or larger than the standard size bit cells may be placed around the edge of the large scale array to further reduce pattern loading affects.
Abstract:
Magnetic tunnel junctions (MTJs) and methods of forming same are disclosed. A pinned layer is disposed in the MTJ such that a free layer of the MTJ can couple to a drain of an access transistor when provided in a magnetic random access memory (MRAM) bitcell. This structure alters the write current flow direction to align the write current characteristics of the MTJ with write current supply capability of an MRAM bitcell employing the MTJ. As a result, more write current can be provided to switch the MTJ from a parallel (P) to anti-parallel (AP) state. An anti-ferromagnetic material (AFM) layer is provided on the pinned layer to fix pinned layer magnetization. To provide enough area for depositing the AFM layer to secure pinned layer magnetization, a pinned layer having a pinned layer surface area greater than a free layer surface area of the free layer is provided.
Abstract:
Three-dimensional (3D) interconnect structures employing via layer conductive structures in via layers are disclosed. The via layer conductive structures in a signal path in an interconnect structure are disposed in respective via layers adjacent to metal lines in metal layers. The via layer conductive structures increase the conductive cross-sections of signal paths between devices in an integrated circuit (IC) or to/from an external contact. The via layer conductive structures provide one or both of supplementing the height dimensions of metal lines and electrically coupling metal lines in the same or different metal layers to increase the conductive cross-section of a signal path. The increased conductive cross-section reduces current-resistance (IR) drop of signals and increases signal speed. As metal track pitches are reduced in size, signal path resistance increases. The via layer conductive structures are provided to reduce or avoid an even greater increase in resistance in the signal paths.
Abstract:
Certain aspects provide methods and apparatus for in-memory convolution computation. An example circuit for such computation generally includes a memory cell having a bit-line and a complementary bit-line and a computation circuit coupled to a computation input node of the circuit and at least one of the bit-line or the complementary bit-line. In certain aspects, the computation circuit comprises a counter, an NMOS transistor coupled to the memory cell, and a PMOS transistor coupled to the memory cell, drains of the NMOS and PMOS transistors being coupled to the counter.
Abstract:
Certain aspects provide a circuit for in-memory computation. The circuit generally includes an in-memory computation array having a plurality of computation circuits, each of the computation circuits being configured to perform a dot product computation. In certain aspects, each of the computation circuits includes a memory cell, a capacitive element, a precharge transistor coupled between an output of the memory cell and the capacitive element, and a read transistor coupled between a read bit line (RBL) and the capacitive element.
Abstract:
A distributed feedback (DFB) laser that includes a substrate comprising a first surface and a second surface, wherein the substrate comprises silicon; a plurality of shallow trench isolations (STIs) located over the second surface of the substrate; a grating region located over the plurality of STIs and the substrate, wherein the grating region comprises a III-V semiconductor material; a non-intentional doping (NID) region located over the grating region; and a contact region located over the NID region.