Abstract:
A computer-based method for maintaining an autonomous or self-driving vehicle is provided. The method is implemented using a vehicle controlling (“VC”) computer device installed on the vehicle. The method may include determining that a maintenance operation is required for the self-driving vehicle, retrieving an operator schedule for an operator of the self-driving vehicle, retrieving a facility schedule for a facility, determining a time for performing the maintenance operation based upon the operator schedule, the facility schedule, and an amount of time required to (i) complete the maintenance operation, (ii) drive the self-driving vehicle from a first location to the facility to arrive at the determined time, and (iii) drive the self-driving vehicle to a second location, instructing the self-driving vehicle to drive from the first location to the facility to arrive at the determined time; and/or instructing the self-driving vehicle to drive from the facility a second location.
Abstract:
The present embodiments relate to detecting fraudulent insurance claims. According to certain aspects, a central monitoring server may receive and examine data detected by at least one unmanned vehicle and generate an estimated insurance claim for a loss event. The central monitoring server may then receive an actual insurance claim relating to the loss event, and may compare the estimated insurance claim to the actual insurance claim to identify potential buildup included in the actual insurance claim. If buildup is detected, the central monitoring server may then process the actual insurance claim accordingly based upon the potential buildup. As a result, claim monies may be paid to insureds that more accurately reflect actual losses resulting from the loss event, and insurance cost savings may be ultimately passed onto typical insurance customers.
Abstract:
Unmanned aerial vehicles (UAVs) may facilitate insurance-related tasks. UAVs may actively be dispatched to an area surrounding an insured or potentially insured asset, such as with the insurance customer's permission, and collect data related to the insured or potentially insured asset, such as size, height, roof shape, materials (siding, roofing), etc. which may form a basis of the underwriting detail used to evaluate a property. The drone data may reveal site characteristics, such as slope or grade of a parcel; the proximity to other structures (and their uses); trees; rivers; coastlines; and earthquake faults. The drone data may be used by an insurance provider remote server to assess the risk associated with an insured asset, generate or modify an insurance premium or discount, etc. The drone data may also be used to mitigate risk and prevent loss by alerting policyholders of the risk such that corrective action may be taken.
Abstract:
Unmanned aerial vehicles (UAVs) may facilitate insurance-related tasks. UAVs may actively be dispatched to an insured asset and the area surrounding an insured asset, such as with the policyholder or insured's permission and collect data related to the insured asset, such as images, video, audio, weather conditions, thermal signatures, wood and soil samples, etc., and transmit this data to a computing device. The computing device may be associated with and/or utilized by an insurance provider to perform insurance-related tasks, such as processing the data to determine an amount of risk associated with the insured asset. If the amount of risk has increased, the computing device may provide a recommendation to a mobile device of the policyholder on how to reduce the risk such that corrective action may be taken. Insurance discounts may be provided based upon following recommendations that mitigate risk.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D contact scanner includes a tactile sensor system having at least one tactile sensor for generating 3D data points based on tactile feedback resulting from physical contact with at least part of the structure. A 3D model is constructed from the 3D data and is then analyzed to determine the condition of the structure.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with a three-dimensional (3D) scanner. The 3D contact scanner includes a tactile sensor system having at least one tactile sensor for generating 3D data points based on tactile feedback resulting from physical contact with at least part of the structure. A 3D model is constructed from the 3D data and is then analyzed to determine the condition of the structure.
Abstract:
The method and system may be used to control the movement of a remote aerial device in an incremental step manner during a close inspection of an object or other subject matter. At the inspection location, a control module “stabilizes” the remote aerial device in a maintained, consistent hover while maintaining a close distance to the desired object. The control module may retrieve proximal sensor data that indicates possible nearby obstructions to the remote aerial device and may transmit the data to a remote control client. The remote control module may determine and display the possible one or more non-obstructed directions that the remote aerial device is capable of moving by an incremental distance. In response to receiving a selection of one of the directions, the remote control module may transmit the selection to the remote aerial device to indicate the next movement for the remote aerial device.
Abstract:
The method and system may be used to control the movement of a remote aerial device in an incremental step manner during a close inspection of an object or other subject matter. At the inspection location, a control module “stabilizes” the remote aerial device in a maintained, consistent hover while maintaining a close distance to the desired object. The control module may retrieve proximal sensor data that indicates possible nearby obstructions to the remote aerial device and may transmit the data to a remote control client. The remote control module may determine and display the possible one or more non-obstructed directions that the remote aerial device is capable of moving by an incremental distance. In response to receiving a selection of one of the directions, the remote control module may transmit the selection to the remote aerial device to indicate the next movement for the remote aerial device.
Abstract:
A smart towing assistant provides towing-related information to a user associated with towing of a towable object by a vehicle. A chatbot of the smart towing assistant engages in a conversation with the user to answer towing-related questions and provide towing-related information, including towing-related safety information, steering and driving information, and information related to towing insurance. The smart towing assistant may also detect instances of towing activity, and corresponding towing usage information can be used to determine billing amounts associated with usage-based towing insurance. The smart towing assistant may also provide lane assist detection associated with towing of a towable object by a vehicle, to alert a driver of detected towing-related safety issues.
Abstract:
A smart towing assistant provides towing-related information to a user associated with towing of a towable object by a vehicle. A chatbot of the smart towing assistant engages in a conversation with the user to answer towing-related questions and provide towing-related information, including towing-related safety information, steering and driving information, and information related to towing insurance. The smart towing assistant may also detect instances of towing activity, and corresponding towing usage information can be used to determine billing amounts associated with usage-based towing insurance. The smart towing assistant may also provide lane assist detection associated with towing of a towable object by a vehicle, to alert a driver of detected towing-related safety issues.