Abstract:
Power conservation is provided in a network of globally unsynchronized wireless communication devices that use asynchronous channel hopping. Each wireless communication device defines its own channel hopping schedule. The channel hopping schedules include channel hop intervals when the device's receiver is active for receiving transmissions, and sleep intervals when the receiver is in a low power sleep state. Parameters associated with the sleep intervals are defined by each wireless communication device independently of external constraint.
Abstract:
A device may be coupled to a time slot based communication system and receive a timing beacon packet that is broadcast in a time slot of the communication system at a periodic rate, in which the network uses a time slotted channel hopping protocol of sequential frames each having a plurality of time slots. The device may synchronize its time base to the timing beacon. The device may calculate a sleep time corresponding to a number of time slots until a next time slot that is scheduled for use by the device and then place the device in a sleep mode. The device may be awakened after the sleep time and operate during the next time slot. The device may repeat the process of calculating a sleep time, going into sleep mode, and waking for operation after the sleep time in order to reduce power consumption.
Abstract:
In accordance with various embodiments, a system and method of distributed transmission resource management in a wireless network is disclosed. The transmission resource allocation is distributed throughout the network to all nodes. In distributed resource management, the resource allocation may be performed by child and/or remote nodes and child and/or remote nodes actively manage transmission resource allocation in the wireless network.
Abstract:
A method for pseudo channel hopping in a node of a wireless mesh network is provided that includes scanning each channel of a plurality of channels used for packet transmission by the node, wherein each channel is scanned for a scan dwell time associated with the channel, updating statistics for each channel based on packets received by the node during the scanning of the channel, and selecting a channel of the plurality of channels for scanning based on the statistics when the scan dwell time of a currently scanned channel ends.
Abstract:
A wireless transmission having a header and a payload is sent by transmitting a preamble of the header with a first modulation, wherein the preamble carries a coded modulation indicator. The payload and a remainder of the header are transmitted with a modulation associated with the coded modulation indicator. When the transmission is received, the preamble is demodulated in accordance with the first modulation. The coded modulation indicator is then decoded, and the payload and the remainder of the header are demodulated in accordance with the modulation indicated by the decoded modulation indicator.
Abstract:
A wireless combination device is coupled to an antenna for communicating via a first wireless network. A second wireless transceiver configured for communication via said second wireless network. A packet aggregator is coupled to the first wireless transceiver configures a frame aggregated packet for at least a portion of activities on the first wireless network. The frame aggregated packet includes a plurality of data packets and a dummy packet or spoofing so that said frame aggregated packet is extended in time or indicates an extension sufficient to overlap a Tx time interval or Rx time interval for communications occurring over a second wireless network. The first wireless network and said second wireless network are overlapping networks.
Abstract:
A physical layer (PHY) data frame for use in conjunction with processor in a node, processor coupled to a program memory for storing a sequence of operating instructions. The frame has a preamble, PHY header, a MAC header and a MAC payload. The PHY header includes a destination address field having a destination address therein. The destination address is used by the processor to determine match with the node address.
Abstract:
Authentication of a networked device with limited computational resources for secure communications over a network. Authentication of the device begins with the supplicant node transmitting a signed digital certificate with its authentication credentials to a proxy node. Upon verifying the certificate, the proxy node then authenticates the supplicant's credentials with an authentication server accessible over the network, acting as a proxy for the supplicant node. Typically, this verification includes decryption according to a public/private key scheme. Upon successful authentication, the authentication server creates a session key for the supplicant node and communicates it to the proxy node. The proxy node encrypts the session key with a symmetric key, and transmits the encrypted session key to the supplicant node which, after decryption, uses the session key for secure communications. In some embodiments, the authentication server encrypts the session key with the symmetric key.
Abstract:
This invention is an improvement of a Hierarchical Do-Dag based RPL (H-DOC) network configuration where the network address of each node corresponds to its location within the hierarchical network. Network addresses are initialized hierarchically. Candidate patent nodes signal availability. Candidate child nodes respond to a selected candidate parent node with a temporary address. The selected candidate parent node acknowledges selection and communicates a hierarchical address for the child node in a transmission to the temporary address. The child node changes its address to the hierarchical address from the parent node. When a node switches parent nodes, it signals the old parent node to deallocate it as a child node, and then signals a selected candidate parent node with a temporary address.
Abstract:
Systems and methods for relative phase detection and zero crossing detection for power line communications (PLC) are described. In some embodiments, both transmit and receive PLC devices detect a zero crossing on an AC mains phase. The devices start a phase detection counter (PDC) by generating a zero crossing pulse within 5% of the actual zero crossing time. When a frame is transmitted, the transmitting device includes a PDC value in the frame control header (FCH). The PDC value corresponds to the start time of the FCH. When the frame is received at the receive PLC device, the receive PLC device measures a local PDC value between the zero crossing and the start of the FCH. The receive device compares the local PDC value to the PDC value in the FCH of the received frame and determines if the devices are on the same phase.