Abstract:
A hinge device increases an open angle of a second member relative to a first member without enlarging the hinge device. A first pulley is fixed to a first mounting member mounted on the first member. A second pulley is fixed to a second mounting member mounted on the second member. A timing belt runs between the first and second pulleys. One end of a connecting member that connects the first mounting member to the second connecting member connects rotatably to an axis part of the first mounting member, with the opposite end connected rotatably to an axis part of the second mounting member. Pins to that abut to the outside of the timing belt are provided such that the width between one side and the opposite side of the timing belt becomes smaller than the diameter of at least one of the first pulley and the second pulley.
Abstract:
A vehicle door articulating mechanism including an articulating hinge assembly having a hinge arm pivotally mounted to a vehicle structure at one end thereof, a vehicle door pivotally mounted via first and second hinge mounts to the hinge arm at an opposite end of the hinge arm, a first cam mounted to the first hinge mount at one end of the hinge arm, a second cam mounted to the second hinge mount at an opposite end of the hinge arm, and a belt encircling both first and second cams. The hinge arm is disposed at first and second angular positions when the vehicle door is respectively disposed in closed and opened positions. The vehicle door articulating mechanism allows the door to articulate away independent of an adjacent vehicle door during initial and continued opening of vehicle door.
Abstract:
An apparatus and method of directionally controlling a movable partition includes providing at least one roller assembly and a steering actuator, coupled therewith, to a portion of the partition. A controller may be used to control the steering actuator and thereby select, or change, the orientation of the roller assembly with respect to the partition. In one embodiment, one or more sensors may be used to determine the vertical orientation of the partition including whether the partition, or a section thereof, is substantially plumb. If the partition is substantially out of plumb, for example, if a lower edge of the partition is laterally displaced relative to an upper edge of the partition, the controller and steering actuator may cause the at least one roller assembly to direct the partition, or section thereof, in a particular direction until the partition, or section thereof, becomes substantially plumb.
Abstract:
Presented herein is a novel sliding door system that that enables adjustment of at least two sliding doors relative to each other such that surfaces of the sliding doors create a substantially flush surface a support onto which the sliding door mechanism is mounted. The system includes at least one inner and outer sliding door slidably coupled to corresponding guide rails. The guide rail that is coupled to the outer sliding door is selectably moveable by a sliding door mechanism between a first and a second position. In the first position, a user can slide outer and inner sliding doors along said guide rails, whereas in the second position, a surface of the outer sliding door is substantially flush with a surface of said inner sliding door.
Abstract:
A drive arrangement for a shaft has a module carried by the shaft and including a motor, a driven wheel and a drive wheel. The motor, gearbox and drive wheel are carried on a slider plate which can slide transverse to the axis of the shaft. A front plate is fixed transverse to the axis of the shaft. A Bowden cable has its sheath attached to the front plate, and its inner cable attached to the slider plate, so that manipulation of the Bowden cable at a remote location allows force to be applied between the plates either tightening the belt to apply drive from the motor to the shaft, or releasing tension in the belt, to disengage the drive.
Abstract:
An apparatus and method of directionally controlling a movable partition includes providing at least one roller assembly and a steering actuator, coupled therewith, to a portion of the partition. A controller may be used to control the steering actuator and thereby select, or change, the orientation of the roller assembly with respect to the partition. In one embodiment, one or more sensors may be used to determine the vertical orientation of the partition including whether the partition, or a section thereof, is substantially plumb. If the partition is substantially out of plumb, for example, if a lower edge of the partition is laterally displaced relative to an upper edge of the partition, the controller and steering actuator may cause the at least one roller assembly to direct the partition, or section thereof, in a particular direction until the partition, or section thereof, becomes substantially plumb.
Abstract:
An elevator door system includes an elevator car having a front face defining a door opening. At least one elevator door is coupled to the front face of the elevator car for movement between an open position exposing the door opening and a closed position covering the door opening. At least one drive motor is mounted on the front face of the elevator car and is disposed between a lower edge and an upper edge of the elevator car. The drive motor is drivingly coupled to the elevator door for moving the elevator door between the open and the closed positions.
Abstract:
A sliding window panel assembly for a motor vehicle. The assembly includes a stationary window panel having an opening formed therein, at least one guide rail coupled to the stationary window panel below the opening and above a bottom edge of the stationary window panel, a shoe slidably received within the guide rail and configured to slidably move within the guide rail, a movable window panel mounted onto the shoe such that the movable window panel slidably moves with the shoe. The movable window panel can slidably move with respect to the stationary panel along a movable panel path. The lead screw drive unit engages the shoe and is adapted to move the shoe and the movable panel along the movable panel path within the guide rail.
Abstract:
An apparatus and method of directionally controlling a movable partition includes providing at least one roller assembly and a steering actuator, coupled therewith, to a portion of the partition. A controller may be used to control the steering actuator and thereby select, or change, the orientation of the roller assembly with respect to the partition. In one embodiment, one or more sensors may be used to determine the vertical orientation of the partition including whether the partition, or a section thereof, is substantially plumb. If the partition is substantially out of plumb, for example, if a lower edge of the partition is laterally displaced relative to an upper edge of the partition, the controller and steering actuator may cause the at least one roller assembly to direct the partition, or section thereof, in a particular direction until the partition, or section thereof, becomes substantially plumb.
Abstract:
An automated closure assembly (20) is disclosed for a motor vehicle (10). A lateral linkage is connected to the drive mechanism (25) receiving the rotational force and translates the rotational force of the drive mechanism into a linear force to move the door between the open position and an intermediate position between the open position and the closed position. The automated closure assembly also includes a secondary linkage that is connected to both the lateral linkage and the drive mechanism. The secondary linkage translates the rotational force into a linear force to move the door between the intermediate position and the open position such that the door is able to move to its open position past the opening within which the lateral linkage extends.