Abstract:
A two stage reciprocating compressor and associated HVAC systems and methods are disclosed. The reciprocating compressor includes a crankshaft having an eccentric crankpin, a reversible motor for rotating the crankshaft in a forward and a reverse direction, and an eccentric, two position cam rotatably mounted over the crankpin. The crankshaft and cam combine to cause the piston to have a first stroke when the motor operates in the forward direction and a second stroke when the motor operates in the reverse direction. The cam and crankpin also include stabilization means to restrict the relative rotation of the cam about the crankpin. A lubrication system is provided to lubricate the engaging surfaces of the crankshaft and cam and between the cam and the bearing surface of the connecting rod. There is also provided a control for selectively operating the motor either in the forward direction at a first power load or in the reverse direction at a reduced second power load. A protector for the motor is also provided. In addition, the application of the reciprocating compressor to both air conditioning and heat pump systems is disclosed.
Abstract:
An apparatus for controlling an operation of a linear compressor includes: a sensorless circuit unit for detecting a current and a voltage applied to a linear compressor and outputting a work operation value corresponding to them; a stroke controller for receiving the work operation value and outputting a switching control signal corresponding to a variation amount of the work operation value; and an electric circuit unit for receiving the switching control signal from the stroke controller and outputting a certain voltage to the linear compressor, accordingly, a TDC of the piston in consideration of an error due to the nonlinear characteristic can be controlled, and thus, an operation efficiency of the linear compressor can be improved.
Abstract:
In an apparatus and a method for controlling operation of a linear compressor using a pattern recognition for operating a compressor as an optimum efficiency by recognizing a trace about a graph about relation between a current and a displacement as a pattern and sensing variation of the pattern, the apparatus for controlling operation of the linear compressor using a pattern recognition includes a displacement calculating unit calculating a displacement by being inputted the current detected in the current detecting unit and the voltage detected in the voltage detecting unit, a pattern recognition unit being inputted the displacement outputted from the displacement calculating unit and the current outputted from the current detecting unit and detecting a pattern by using a trace corresponded to the displacement and the current, a stroke controlling unit being inputted a pattern from the pattern recognition unit and outputting a switching control signal according to the inputted pattern, and an electric circuit unit being inputted the switching control signal outputted from the stroke controlling unit and outputting a certain voltage to the linear compressor, accordingly it is possible to perform a TDC control of a piston considering an error due to non-linearity characteristics, improve an operation efficiency of a linear compressor and have a wide and precise control region.
Abstract:
In an apparatus and a method for controlling operation of a reciprocating compressor which is capable of operating a compressor stably by detecting a phase difference and using an inflection point of the phase difference, an apparatus and a method for controlling operation of a reciprocating compressor including an electric circuit unit operating a reciprocating compressor by varying a stroke with motion of a piston, a phase difference detecting unit detecting a phase difference of a current and a voltage from the electric circuit unit, a phase inflection point detecting unit detecting a phase inflection point by being inputted the phase difference, and a stroke controlling unit being inputted the detected phase inflection point from the phase inflection point detecting unit and applying a voltage to the electric circuit unit in order to make the stroke correspond to the phase inflection point can control a TDC of a piston regardless of load variation, improve an operation efficiency of a reciprocating compressor, and because a stroke calculating circuit is not required, there is no stroke calculating error according to the motor constant variation, in addition, it is possible to operate a reciprocating compressor by corresponding instantly to a load and operate the reciprocating compressor in a safe region in sensing of an overload by grasping the present load condition using a reference value of a phase difference.
Abstract:
A serial, dual piston high pressure fluid pumping system that overcomes the difficulties of gas in the fluid stream without the need for added mechanical valves or fluid paths. A bubble detection and recovery mechanism monitors compression and decompression volumes of the serially configured dual pump head pump, and the overall system delivery pressure. Bubble detection is effected by sensing a ratio of compression to decompression volume and determining if the ratio exceeds an empirical threshold that suggests the ratio of gas-to-liquid content of eluent or fluid in the system is beyond the pump's ability to accurately meter a solvent mixture. The magnitude of the ratio of compression to decompression volume indicates that either the intake stroke has a bubble or that the eluent has a higher-than-normal, gas content. Once a bubble has been detected, recovery is effected by forcing the pump into a very high stroke volume to achieve a high compression ratio to expel a bubble, and automatically apportioning an optimal amount of piston travel necessary to keep gases compressed into the solution and maintain steady flow.
Abstract:
A pump having both a short stroke pumping mode and a long stroke pumping mode. The pump has two material cylinders, each with an attached hydraulic cylinder for operating a piston rod extending through both the material and hydraulic cylinders. The piston rods are driven by hydraulic fluid supplied to the hydraulic cylinders and are synchronized so that as one piston rod extends, the other piston rod retracts. The piston rods draw material into the material cylinders when retracting, and pump material out of the material cylinders when extending. To pump in a short stroke mode, a diverter valve is placed between the hydraulic pump and the hydraulic cylinders which diverts an amount of hydraulic fluid to the cylinders, causing the hydraulic pistons to only be extended about half the length of the hydraulic cylinder.
Abstract:
A metering pump includes an apparatus for adjusting the stroke length of a pump element. The apparatus comprises a lever having a cam which is contacted by the pump element.
Abstract:
A two-stage reciprocating compressor is provided. The compressor includes a reversible motor that rotates a crankshaft. The crankshaft is connected to a piston by a mechanical system. The mechanical system drives the piston at a full stroke between a bottom position and a top dead center position when the motor is operated in a forward direction. The mechanical system drives the piston at a reduced stroke between an intermediate position and the top dead center position when the motor is operated in the reverse direction. The compressor also includes a control for selectively operating the motor in either the forward direction at a first preselected, fixed speed or in the reverse direction at a second preselected fixed speed.
Abstract:
A liquid pumping apparatus for pumping liquids, more specifically a linear peristaltic pump apparatus. The apparatus consists of a high durometer compressible elastomeric liquid flow tube (12), an infeed valve assembly (26), an outfeed valve assembly (38), an extensible and retractable actuator anvil (34) having a round surface which engages the flow tube (12) at all times, an opposed anvil (24.1) having a round surface in engagement with the flow tube at all times, the flow tube being held between the anvils (34, 24.1) in a slightly compressed state when the anvil (34) is retracted, and a control assembly (100) for causing the movable anvil to be sequentially extended and retracted to cause flow within the flow tube (12) from the infeed valve assembly (26) to the outfeed valve assembly (38). With this apparatus the lumen of the flow tube (12) to the sides of the anvils is not completely reduced to zero volume during displacement compression whereby gas embolisms do not erupt or explode when discharged. Two principal embodiments are disclosed, one having infeed and outfeed check valves which oclude the flow tube, and the other having check valves.
Abstract:
A tightly closed casing has an inside space for storing coolant gas. A block is accommodated in this casing. A motor includes a stator and a mover. A piston is connected to the mover of the motor. A movable element includes the mover of the motor and the piston. A stationary element includes the stator of the motor and the block. An elastic element has a portion fixed to the movable element and another portion fixed to the stationary element. A cylinder is shiftable in an axial direction with respect the block. A shifting device shifts the cylinder in the axial direction.