Abstract:
Resettable circuit interrupting devices, such as GFCI devices, that include an independent trip mechanism and a reset lockout mechanism are provided. The trip mechanism operates independently of a circuit interrupting mechanism used to break the connection, and the reset lockout mechanism prevents the resetting of electrical connections between input and output conductors if the circuit interrupting mechanism is non-operational or if an open neutral condition exists.
Abstract:
An arc fault detector system detects arcing faults in an electrical distribution system by monitoring one or more conductors and producing an input signal representing one or more electrical signal conditions in the circuit to be monitored. This input signal is processed to develop signals representing the electrical current flow through the monitored circuit and broadband noise signal components. The system analyzes these signals to determine whether an arcing fault is present, and if so, outputs a trip signal which may be used directly or indirectly to trip a circuit breaker or other circuit interruption device.
Abstract:
In an exemplary embodiment of the invention, a dual test mechanism is presented for use in a circuit breaker. More specifically, the dual test mechanism includes a dual test button which comprises a single switch for testing both the AFCI and GFCI circuits of the breaker. The test mechanism includes a circuit board, which forms a part of the circuit breaker, and a test button assembly which includes a test button and signaling components which are electrically connected to the circuit board.
Abstract:
An arc fault circuit breaker (10) conducting an electric current to a protected load is presented. The circuit breaker (10) has a first (mechanical) compartment (24) and a second (electrical) compartment (62). A bimetal resistor (50) is disposed within the first compartment (24) and conducts the current therethrough. The bimetal resistor (50) has a stud (56) extending into the second compartment (62). A single sense line (60) is electrically connected to the bimetal resistor (50) and routed into the second compartment (62). The sense line (60) and said stud (56) conduct a voltage signal indicative of arcing of the current. A circuit board (84) is disposed within the second compartment (62) and is connected to the sense line (60) and stud (56) within the second compartment (62) to process the voltage signal. The circuit board (84) has a first conductive path (104) electrically connected to the stud (56), and a second conductive path (106) electrically connected to the sense line (60). The first and second conductive paths (104,106) run substantially parallel and proximate to each other such that electromagnetic interference of the voltage signal is substantially reduced.
Abstract:
The toggle mechanism of a circuit breaker is connected at one end to the pivoted contact arm and at the other end to a pivoted latch lever which is engaged to latch the toggle mechanism by a latch member pivoted for movement in a plane perpendicular to the plane of the toggle mechanism. The latch member serves as an armature for a trip motor energized by a trip circuit responsive to an arc fault and/or a ground fault to unlatch the toggle mechanism and trip the circuit breaker open. The latch member is also tripped by a helical bimetal responsive to persistent overcurrents and coupled to the latch member through an ambient compensator bimetal cantilevered from the latch member. A flexible shunt connected between the helical bimetal and contact arm passes through an extension of the magnetic circuit of the trip motor to generate a magnetic field of sufficient strength to trip the latch member instantaneously in response to a short circuit.
Abstract:
A circuit interrupter of the type including an electronic trip unit for overcurrent determination includes a separate circuit to power the trip unit along with a Hall Effect or GMR Device to sense the current flow within the protected circuit. A removable option plug electrically interconnects with the trip unit to enable ground fault and arcing fault protection.
Abstract:
A circuit breaker for interrupting electrical current flowing through a line conductor to a load terminal in response to the detection of a current overload, ground fault and/or arcing fault. The circuit breaker has a trip circuit to generate a trip signal, a releasably latchable trip lever, and a latching mechanism. The trip lever is moveable between a latched position and a tripped position. In the latched position, the trip lever engages the latching mechanism and the electrical current flows through said circuit breaker. When a fault is detected by the trip circuit, a trip signal is send to the latching mechanism. Upon receiving the trip signal, the latching mechanism disengages the trip lever allowing the trip lever to slide into the tripped position and interrupting the current flow through the circuit breaker.
Abstract:
Apparatus for generating alarms for a group of circuit interrupters, especially those which respond to arcing faults, includes a device associated with each circuit interrupter providing an indication of a tripped condition and a common alarm generator which generates an alarm when any one, or at least any one of a number of selected circuit interrupters, is in the tripped condition. In one embodiment of the invention, switches indicating that associated circuit interrupters are tripped generate auxiliary trip signals on a common alarm bus. The auxiliary trip signals are latched by a latch on the common alarm bus which energizes a relay to activate a local and/or remote alarm. The latch is reset by a switch on the load center door. In another embodiment of the invention, an IR beam is blocked from reaching a photo-detector whenever a circuit interrupter handle is in the tripped position which also results in energization of a relay to actuate the common alarm. Selected circuit interrupters only can be alarmed by orienting the light beam such that only circuit interrupters selected by adding an extension to the handle block the beam when the associated circuit interrupter is tripped.
Abstract:
Modular circuit protection devices and configurable panelboard systems include arc-free operation, thermal management features providing safe operation in hazardous environments at lower cost and without requiring conventional explosion-proof enclosures and without entailing series connected separately provided packages such as circuit breaker devices and starter motor contactors and controls.
Abstract:
Modular circuit protection devices and configurable panelboard systems include arc-free operation, thermal management features providing safe operation in hazardous environments at lower cost and without requiring conventional explosion-proof enclosures and without entailing series connected separately provided packages such as circuit breaker devices and starter motor contactors and controls.