Abstract:
An apparatus includes a processing unit that divides an overlay buffer into a plurality of macro blocks, draws a graphic primitive object including a plurality of pixels, identifies one of the plurality of macro blocks upon a determination that the plurality of pixels has crossed a boundary of the one of the plurality of macro blocks, and image processes the one of the plurality of macro blocks.
Abstract:
An example transconductance circuit is provided in accordance with one embodiment. The transconductance circuit can comprise: an output node; at least one transistor; a variable resistance; and a differential amplifier; wherein the at least one transistor and the variable resistance are in series connection with the output node, an output of the differential amplifier is connected to a control node of the at least one transistor, a first input of the amplifier is responsive to an input signal, and a second input of the amplifier is responsive to a voltage across the variable resistance. Such a circuit may overcome noise problems in transconductance circuits which operate over a wide range of input signals with a fixed resistor in series with the at least one transistor.
Abstract:
A flash ADC circuit may include a reference ladder providing reference signals and a plurality of comparators, each providing an output based on a comparison of a pair of input signals to a pair of reference signals. At least one pair of the comparators may receive the same pair of reference signals with a different orientation of the reference signals at each of the comparators. The flash ADC may include a switch network for swapping the pair of reference signals between the pair of comparators.
Abstract:
An electrical circuit includes a local oscillator configured to generate a first reference signal and a second reference signal having a predetermined phase shift with the first reference signal, an I-channel mixer configured to inject the first reference signal to an incoming signal and generate a first output, a compensation mixer configured to multiply the first output with a constant factor to generate a second output, a first low pass filter configured to approximately attenuate frequencies in the second output to generate a third output, and a first correcting filter configured to filter the third output to generate a fourth output. The first correcting filter is configured to reduce a channel impulse response mismatch between the first low pass filter and a second low pass filter, which is configured to attenuate frequencies in a Q-channel of the incoming signal. In specific embodiments, the phase shift includes 45°.
Abstract:
At least one embodiment provides a method for a nanopower boost regulator to startup from an ultra-low-voltage (such as 0.3V˜0.5V) for energy harvesting applications. The method does not necessarily require a special process or any external components such as mechanical switches. The startup circuit can include an asynchronous boost circuit to charge up an output with stacked power NMOS transistors, a ring oscillator, and/or a charge pump, along with accompanying circuitry.
Abstract:
A converter may include multiple converter stages connected in series. Each converter stage may receive a clock signal and an analog input signal, and may generate an analog output signal and a digital output signal. Each converter stages may include an encoder generating the digital output signal, a decoder generating a reconstructed signal, a delaying converter generating a delayed signal, and an amplifier generating a residue signal, wherein the delayed signal may be a continuous current signal.
Abstract:
A power supply monitoring circuit for monitoring a voltage at a power supply node compared to a reference node, the power supply monitoring circuit comprising a first field effect transistor and first and second voltage dropping components arranged in current flow communication between the power supply node and the reference node and each having first and second nodes, and wherein a first node of the first voltage dropping component is connected to one of the first and second nodes of the field effect transistor, and a gate of the field effect transistor is connected to the second node of the first voltage dropping component, and an output signal is taken from a connection made with the first field effect transistor.
Abstract:
Embodiments of the present disclosure may provide a dynamic latch circuit with increased speed and that can perform comparisons on low input signals. The dynamic latch circuit may include a first input transistor receiving a first input signal and a second input transistor receiving a second input signal. A cross coupled inverters may be included to provide a first and second output signals based on the sampled input signals from the first and second input transistors. A reset circuit may be included to reset the first and second outputs to a reference voltage. The latch circuit may include an impedance controller coupled in parallel with the first and second input transistors.
Abstract:
A system for processor wake-up based on sensor data includes an audio buffer, an envelope buffer, and a processor. The audio buffer is configured to store a first data from a sensor. The first data is generated according to a first sampling rate. The envelope buffer is configured to store a second data, which is derived from the first data according to a second sampling rate, which is less than the first sampling rate. The processor is configured to wake up periodically from an idle state and read the second data from the envelope buffer. If the second data indicates an activity, the processor is configured to read the first data from the audio buffer. If the second data does not indicate an activity, the processor is configured to return to the idle state.
Abstract:
An amplifier, comprising: an input node; an output node; a gain stage having a gain stage inverting input, a gain stage non-inverting input and a gain stage output; a feedback capacitor connected in a signal path between the gain stage output and the gain stage inverting input; a sampling capacitor connected between the input node and the gain stage non-inverting input, and a controllable impedance in parallel with the feedback capacitor, wherein the controllable impedance is operable to switch between a first impedance state in which it does not affect current flow through the feedback capacitor, and a second impedance state in which it cooperates with the feedback capacitor form a bandwidth limiting circuit.