Abstract:
CMOS I/O structures are described which are latchup-immune by inserting p+ and n+ diffusion guard-rings into the NMOS and PMOS source side of a semiconductor substrate, respectively. P+ diffusion guard-rings surround individual n-channel transistors and n+ diffusion guard-rings surround individual p-channel transistors. These guard-rings, connected to voltage supplies, reduce the shunt resistances of the parasitic SCRs, commonly associated with CMOS structures, from either the p-substrate to p+ guard-ring or the n-well to n+ guard-ring. In a second preferred embodiment a deep p+ implant is implanted into the p+ guard-ring or p-well pickup to decrease the shunt resistances of the parasitic SCRs. The n+ and p+ guard-rings, like the guard-rings of the first preferred embodiment, are connected to positive and negative voltage supplies, respectively. In either of the two preferred embodiments the reduced shunt resistances prevent the forward biasing of the parasitic bipolar transistors of the SCR, thus insuring that the holding voltage is larger than the supply voltage.
Abstract:
A method to erase data from a flash EEPROM while electrical charges trapped in the tunneling oxide of a flash EEPROM are eliminated to maintain proper separation of the programmed threshold voltage and the erased threshold voltage after extended programming and erasing cycles. The method to erase a flash EEPROM cell begins by first applying a moderately high positive voltage pulse to the source of the EEPROM cell. Simultaneously, a first relatively large negative voltage is applied to the control gate. While a ground reference potential is applied to the semiconductor substrate. At this same time the drain is floating. The flash EEPROM cell is then detrapped by floating the source and drain and applying the ground reference potential to the semiconductor substrate. At the same time a second relatively large negative voltage pulse is applied to the control gate.
Abstract:
A method to erase data from a flash EEPROM while electrical charges trapped in the tunneling oxide of a flash EEPROM are eliminated to maintain proper separation of the programmed threshold voltage and the erased threshold voltage after extended programming and erasing cycles. The method to erase a flash EEPROM cell begins by channel erasing to remove charge from the floating gate of the flash EEPROM cell. The channel erasing consists of applying a first relatively large negative voltage pulse to the control gate of said EEPROM cell and concurrently applying a first moderately large positive voltage pulse to a first diffusion well. At the same time a ground reference potential is applied to the semiconductor substrate, while the drain and a second diffusion well is allowed to float. The method to erase then proceeds with the source erasing to detrap the tunneling oxide of the flash EEPROM cell. The source erasing consists continued floating the drain and the second diffusion well and concurrently applying the ground reference potential to the semiconductor substrate and the first diffusion well. Concurrently a second relatively large negative voltage pulse is applied to the control gate, as a second moderately large positive voltage pulse is applied to said source.
Abstract:
An improved ESD protection circuit of the type having a field transistor connected as a clamp between ground and a pad to be protected and an FET trigger circuit that is connected between ground and a node where the protected circuits are connected. A resistor interconnects the pad and the node. The trigger FET turns on when a high ESD voltage causes avalanche breakdown and charge carriers from the trigger FET turn on the field transistor clamp. Before the field transistor clamp turns on, oxide breakdown in the gate oxide of the FET occurs. A resistor is connected between the gate electrode and ground to limit the current through the oxide during the time for the avalanche to develop and for the clamp to turn on.
Abstract:
Electrostatic discharge (ESD) protection in high voltage semiconductor devices is disclosed that provides enhanced current isolation between transistor drains or sources by creating an isolation island surrounding the drains or sources. This isolation island can be a higher-doped region within which the drain/source lies. The junction between the higher doping of this island region and the surrounding substrates operates to limit the amount of current that passes through the drain/source. Additionally, oxide features may be used to create an island surrounding the drain/source contact. Again, this isolating effect makes the amount of current passing through the device more uniform, which protects the device from damage due to an ESD event.
Abstract:
A sensor for electrostatic discharge (ESD) protection includes a voltage divider and a device coupled thereto. The sensor is coupled to an input terminal of the sensor, wherein a voltage drop occurs across the voltage divider and a high state voltage is generated at an output terminal of the sensor when an ESD voltage pulse is applied to the input terminal of the sensor. The device maintains the high state voltage at the output terminal of the sensor, while the ESD voltage pulse is applied to the input terminal of the sensor. A method for ESD protection includes the step of pulling down a gate terminal of a MOS transistor of an ESD circuit to a low state voltage when an ESD pulse is sensed.
Abstract:
Electrostatic discharge (ESD) protection in high voltage semiconductor devices is disclosed that provides enhanced current isolation between transistor drains or sources by creating an isolation island surrounding the drains or sources. This isolation island can be a higher-doped region within which the drain/source lies. The junction between the higher doping of this island region and the surrounding substrates operates to limit the amount of current that passes through the drain/source. Additionally, oxide features may be used to create an island surrounding the drain/source contact. Again, this isolating effect makes the amount of current passing through the device more uniform, which protects the device from damage due to an ESD event.
Abstract:
An electrostatic discharge protection device comprising a multi-finger gate, a first lightly doped region of a second conductivity, a first heavily doped region of the second conductivity, and a second lightly doped region of the second conductivity. The multi-finger gate comprises a plurality of fingers mutually connected in parallel over an active region of a first conductivity. The first lightly doped region of a second conductivity is disposed in the semiconductor substrate and between two of the fingers. The first heavily doped region of the second conductivity is disposed in the first lightly doped region of the second conductivity. The second lightly doped region of the second conductivity is beneath and adjoins the first lightly doped region of the second conductivity.
Abstract:
A semiconductor device includes a gate electrode over a semiconductor substrate, wherein the gate electrode has a gate width direction; a source/drain region in the semiconductor substrate and adjacent the gate electrode, wherein the source/drain region has a first width in a direction parallel to the gate width direction; and a bulk pick-up region in the semiconductor substrate and abutting the source/drain region. The bulk pick-up region and the source/drain region have opposite conductivity types. The bulk pick-up region has a second width in the width direction, and wherein the second width is substantially less than the first width.
Abstract:
An electrostatic discharge-protected MOS structure is disclosed. An electrostatic discharge-protected MOS structure includes a semiconductor substrate of a first type, a first well of the first type formed in the semiconductor substrate, and a second well of a second type disposed adjacent to the first well. The MOS structure further includes a source region, a drain region, and an oxide layer and a polysilicon layer for forming a gate electrode of the MOS structure. In addition, the MOS structure includes a parasitic SCR comprising at least a parasitic NPN bipolar transistor and a buried layer of the second type interposed between the second well and the semiconductor substrate. The buried layer functions to lower a resistance of the semiconductor substrate during an ESD event so that ESD currents generated by the parasitic SCR are dissipated through the buried layer and the semiconductor substrate, thereby protecting the MOS structure.