Abstract:
A device includes a first part having a co-molded first support, valve cover and elastic actuator, and a second part having an injection molded second support, valve seat, and variable-volume storage chamber pre-form. The pre-form is blow molded into a flexible pouch defining the variable-volume storage chamber. The one-way valve includes a semi-annular, curvilinear, relatively rigid valve seat defining axially-extending, opposing first marginal portions, and an axially-extending first mid-portion angularly extending between the opposing first marginal portions. A flexible valve member is superimposed on the valve seat and defines axially-extending, opposing second marginal portions fixedly secured on or adjacent to respective first marginal portions of the valve seat, and an axially-extending second mid-portion angularly extending between the opposing first marginal portions and superimposed onto the first mid-portion of the valve seat. The flexible valve cover and valve seat form a normally closed axially and angularly extending valve seam therebetween.
Abstract:
An apparatus and method for sterile filling comprises de-contaminating a needle penetrable surface of a device including a needle penetrable septum and a sealed chamber in fluid communication with the needle penetrable septum. A filling needle penetrates the needle penetrable septum, introduces substance through the filling needle and into the chamber and is, in turn, withdrawn from the septum. A liquid sealant is applied to the penetrated region of the septum. Radiation or energy is applied to the liquid sealant to cure the liquid sealant from a liquid phase to a solid phase.
Abstract:
An assembly includes a support and drive assembly, a first structure and a second structure. The first structure is in operable communication with and supported by the support and drive assembly. The first structure includes at least one filling or needle assembly and is adjustable to receive a plurality of filling or needle assemblies. The second structure is supported by the support and drive assembly. The second structure includes at least one seal assembly and is adjustable to receive a plurality of seal assemblies. A method includes determining a number of containers or vials that are to be filled concurrently and adjusting an assembly to include at least one filling or needle assembly and at least one seal assembly. A number of the filling or needle assemblies and the seal assemblies equals the number of containers or vials.
Abstract:
A container including a nozzle and body depending therefrom. The body is preferably tubular and defines an interior which retains a product to be dispensed. A cap engages the nozzle to prevent inadvertent release of the product. In order to dispense the product, the cap is removed and pressure is applied to the body and the nozzle allows release of the product. The nozzle releases the product without exposing the remaining product to the external atmosphere, thus the sterility of the interior of the body is maintained and the shelf life of the product is increased. The nozzle includes an inner body, coupled to the tubular body, surrounded by a flexible outer cover. A seam between the inner body and flexible outer cover forms a one-way release valve wherein a portion of the seam remains closed during dispensing the product.
Abstract:
An apparatus and method are provided for formulating and aseptically filling liquid products. A first liquid source includes at least one first liquid component; a second liquid source includes at least one second liquid component; and a container includes a body defining an empty, sterile storage chamber therein that is sealed with respect to ambient atmosphere. The container is introduced into a sterile filling chamber. A first filling member coupled in fluid communication with the first liquid source is placed in fluid communication with the storage chamber of the container located in the sterile filling chamber, and the first liquid component is aseptically introduced through the first filling member and into the storage chamber. A second filling member coupled in fluid communication with the second liquid source is placed in fluid communication with the storage chamber of the container located in the sterile filling chamber, and the second liquid component is aseptically introduced through the second filling member and into the storage chamber and, in turn, the first and second liquid components are combined into a liquid product formulation within the sterile chamber of the container. The first and second filling members are withdrawn from fluid communication with the storage chamber of the container located within the sterile filling chamber, and the filled storage chamber is sealed with respect to ambient atmosphere to hermetically seal the liquid product formulation within the storage chamber of the container.
Abstract:
An apparatus and method for sterile filling comprises de-contaminating a needle penetrable surface of a device including a needle penetrable septum and a sealed chamber in fluid communication with the needle penetrable septum. A filling needle penetrates the needle penetrable septum, introduces substance through the filling needle and into the chamber and is, in turn, withdrawn from the septum. A liquid sealant is applied to the penetrated region of the septum. Radiation or energy is applied to the liquid sealant to cure the liquid sealant from a liquid phase to a solid phase.
Abstract:
A stopper and container body are molded in the same molding machine. An assembly device, such as a pick and place robot, transfers the stopper from one mold cavity into the opening in the container body located within another mold cavity, or vice versa, to assemble the stopper and container body. Then, the assembled container body and stopper are removed from the molding machine and transported to a needle filling and laser resealing station for filling and laser resealing. A laminar flow source directs a substantially laminar flow of air or sterile gas over the mold surfaces, stoppers and container bodies, and assembly device, to prevent contamination during assembly.
Abstract:
A method for sterilizing a container is provided where a penetrable septum of a sealed empty device is penetrated with an injection member. A fluid sterilant is then injected through the injection member and into an interior chamber of the device. The fluid sterilant is allowed to reside within the chamber a sufficient amount of time to render the chamber either sterile or bactericidal. Product can then be introduced through the septum into the sterile or bactericidal chamber. The resulting penetration aperture is then resealed to hermetically seal the product within the chamber.
Abstract:
A container including a body defining an outflow opening and at least one chamber adapted for storing a product, such as a fat containing liquid product, and a container closure including a primary seal for hermetically sealing the product within the chamber during storage. The container closure includes a sealing member forming a substantially fluid-tight seal between the container closure and the body, and a dispensing member in fluid communication with the chamber. The container closure and body move relative to each other between a first position where the primary seal is seated about the outflow port to hermetically seal the product in the chamber during storage, and a second position where the primary seal is displaced from the outflow port to allow product to pass from the chamber through the outflow port and into dispensing member to dispense the product.