Abstract:
A communication method in a wireless communication system, and a wireless device therefore are discussed. The method according to one embodiment includes receiving a first control channel including first scheduling information on a first physical downlink shared channel (PDSCH) to be received in a first subframe; receiving a second control channel including second scheduling information on a second PDSCH to be received in a second subframe; determining whether the first subframe in which the first PDSCH is to be received is overlapped with the second subframe in which the second PDSCH is to be received; and if the first subframe is determined as being overlapped with the second subframe, determining a valid subframe for receiving at least one of the first PDSCH and the second PDSCH.
Abstract:
A method and apparatus are presented for transmitting acknowledgement (ACK)/negative acknowledgement (NACK) signals in a wireless communication system. ACK/NACKs are spread using spreading codes of a spreading factor, the spreading factor being one of a first spreading factor equal to 2 and a second spreading factor equal to 4. One or more physical hybrid automatic repeat request (ARQ) indicator channel (PHICH) groups allocated in units of four resource elements are transmitted, each PHICH group carrying up to four ACK/NACK signals for the first spreading factor, and up to eight ACK/NACK signals for the second spreading factor. A total number of allocated PHICH groups for the first spreading factor is determined as twice a total number of allocated PHICH groups for the second spreading factor. A PHICH group index for an ACK/NACK is determined using a first function. A spreading code index for the ACK/NACK is determined using a second function.
Abstract:
A method of performing uplink transmission at a user equipment (UE) is provided. The UE determines whether a hybrid automatic repeat request (HARQ) retransmission collides with a transmission for a random access in a time interval, and performs the HARQ retransmission when the HARQ retransmission does not collide with the transmission for random access in the time interval. A current value of information indicating a redundancy version (RV) for the HARQ retransmission is incremented by 1 when the HARQ retransmission does not collide with the transmission for random access in the time interval.
Abstract:
A method for encoding a transport block in a wireless communication system, and a wireless apparatus therefore are discussed. The method according to one embodiment includes determining a size of the transport block; attaching a first cyclic redundancy check (CRC) code to the transport block having the determined size to produce a first CRC-attached transport block; segmenting the first CRC-attached transport block into a plurality of code blocks when a size of the first CRC-attached transport block is larger than a maximum code block size; attaching a second CRC code to each of the plurality of code blocks to produce a plurality of second CRC-attached code blocks; and encoding the second CRC-attached code blocks by a turbo-encoder. The size of the transport block is determined from among a plurality of first predetermined transport block sizes and a plurality of second predetermined transport block sizes.
Abstract:
A method for receiving uplink control information in a wireless communication system supporting carrier aggregation (CA), and a base station therefore are discussed. The method according to one embodiment includes transmitting downlink data through a first downlink component carrier (DL CC) or a second DL CC; receiving an acknowledgement/not-acknowledgement (ACK/NACK); and receiving periodic channel state information (CSI). If the ACK/NACK collides with the periodic CSI and the ACK/NACK corresponds to downlink data transmitted through only the first DL CC, both the ACK/NACK and the periodic CSI are received in the same subframe of a first uplink component carrier (UL CC). If the ACK/NACK collides with the periodic CSI and the ACK/NACK corresponds to downlink data transmitted through both the first DL CC and the second DL CC, the periodic CSI is not received and only the ACK/NACK is received in the same subframe of the first UL CC.
Abstract:
A method for transmitting an uplink signal at a User Equipment (UE) in a wireless communication system includes receiving, from a Base Station (BS), an uplink scheduling grant for multi-antenna transmission; transmitting the uplink signal precoded using precoding information included in the received uplink scheduling grant to the BS; and retransmitting the uplink signal to the BS according to Acknowledgment/Negative Acknowledgment (ACK/NACK) corresponding to the transmitted uplink signal. The retransmitted uplink signal is precoded using precoding information included in a most recent uplink scheduling grant or a predetermined precoding matrix if an uplink scheduling grant for the retransmission is not received from the BS.
Abstract:
A method, performed by a user equipment, is described for adjusting a transmit power for sounding reference signals (SRS) in a wireless communication system supporting a plurality of cells. A determination is made for each transmit power for a plurality of SRS to be transmitted on a subframe for a serving cell. If a total transmit power for the plurality of SRS to be transmitted on the subframe exceeds a maximum transmit power, the total transmit power is scaled for the plurality of SRS. The total transmit power for the plurality of SRS is scaled with a scaling factor parameter for the serving cell. Values of the scaling factor parameter are the same across serving cells.
Abstract:
A method for transmitting signals using a plurality of component carriers in a wireless communication system. The method according to one embodiment includes controlling transmission powers for one or more channels per each component carrier; and checking whether a total transmission power of a plurality of channels for simultaneous transmission over the plurality of component carriers exceeds a total maximum transmission power configured for a communication apparatus or not, the plurality of channels including a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH); and if the total transmission power of the plurality of channels over the plurality of component carriers exceeds the total maximum transmission power, adjusting a transmission power of the PUSCH in such a way that the total transmission power of the plurality of channels over the plurality of component carriers does not exceed the total maximum transmission power transmission power.
Abstract:
A method for controlling transmission power by a communication apparatus in a wireless communication system supporting a plurality of component carriers. A total transmission power of a physical uplink shared channel (PUSCH) is calculated for a PUSCH transmission on a first component carrier and a sounding reference symbol (SRS) for a SRS transmission on a second component carrier. The PUSCH transmission is prioritized rather than the SRS transmission if the PUSCH transmission overlaps with the SRS transmission in a time domain and the total transmission power exceeds a maximum transmission power configured for the communication apparatus.
Abstract:
A method is described for transmitting signals at a communication apparatus in a wireless communication system supporting a plurality of component carriers. A physical uplink shared channel (PUSCH) with uplink control information (UCI) and a PUSCH without the UCI are simultaneously transmitted using the plurality of component carriers. A predefined transmission power determination scheme is used to determine the transmission power of the PUSCH with the UCI, and determine the transmission power of the PUSCH without the UCI. If a total transmission power of the PUSCH with the UCI and the PUSCH without the UCI exceeds a value corresponding to a maximum transmission power configured for the communication apparatus, the determined transmission power of the PUSCH without UCI is adjusted while maintaining the determined transmission power of the PUSCH with the UCI.