Abstract:
Aspects of the present disclosure generally relate to wireless communication and to mechanisms designed to help improve dynamic sharing of one or more receive chains among different radio access technologies (RATs). For example, the mechanisms may be used with LTE and other RATs where Carrier Aggregation is used for simultaneous voice and LTE (SV-LTE) applications.
Abstract:
Techniques for scheduling data for transmission over multiple links are described herein. For example, techniques described herein include adding extra delay at low-delay link and/or allocating long-delay links with newer and/or higher sequence number packets and low-delay links with older and/or lower sequence number packets. Additional or alternative techniques disclosed herein include disabling multi-link under low throughput, and/or avoiding overflow using history information. Additional or alternative techniques disclosed herein include normalizing data size into time and/or buffer size configuration.
Abstract:
A small base node such as a Home Base Node (HNB), or femto cell, may reduce its transmit power in order to prevent co-channel or adjacent channel interference, or to limit its coverage area. Once the power is set, the HNB signal to a served Home User Equipment (HUE) its transmit Common Pilot Channel (CPICH) transmit power for accurate path loss estimation. When this power is outside of the permissible range, the HNB adjusts other parameters (such as Random Access Channel (RACH) constant value) to compensate for the error in signaled CPICH power, and thus compensate in that process the error in determining path loss. Similarly, if the uplink sensitivity is adjusted, to prevent interference, parameters would also be adjusted and signaled to the HUE to reflect the link imbalance.
Abstract:
Methods and apparatuses for serving cell management of a user equipment (UE) are presented. Particularly, methods and apparatuses are presented for suppressing a serving cell change based on a speed of the UE. For instance, an example method is presented for serving cell management that may include determining that a serving cell change condition exists for an initiation of a serving cell change for the UE, wherein the serving cell change comprises changing a serving cell of the UE from a macro cell to a low power cell. In addition, the example method may include obtaining a speed of the UE and suppressing the initiation of the serving cell change based on the speed of the UE.
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided which may be implemented as part of a mobile device to selectively transition operation of the mobile device from one communication mode to another communication mode. For example, a mobile device may selectively transition operation from one communication mode to another communication mode based, at least in part, on a determination that certain signaling environment attributes which were previously experienced and identified may once again have been experienced and identified.
Abstract:
Methods, apparatus, and computer program products for managing mobility in a multi-radio device are provided. One example method generally includes detecting that a first channel is not usable for communicating via a first radio access technology (RAT); receiving a message to redirect from a second channel to the first channel; determining the first channel is in a set of one or more blocked channels not usable for the first RAT; and in response to the determination, taking one or more actions. Another example method generally includes detecting that a first channel is not usable for communicating via a first RAT and providing an indication to a network that a user equipment (UE) no longer supports the first channel.
Abstract:
Various methods, apparatuses and/or articles of manufacture are provided which may be implemented as part of a mobile device to selectively transition operation of the mobile device from one communication mode to another communication mode. For example, a mobile device may selectively transition operation from one communication mode to another communication mode based, at least in part, on a determination that certain signaling environment attributes which were previously experienced and identified may once again have been experienced and identified.
Abstract:
Apparatus and methods of maintaining a cell database for wireless communications include discovering a second cell to which a user equipment may reselect. In an aspect, the user equipment may be currently served by a first cell and the second cell is a closed subscriber group cell. Further, aspects include querying a fingerprinting database to determine whether the second cell was previously recorded in the fingerprinting database. Upon determining that the second cell was not previously recorded, further aspects include adding the second cell to the fingerprinting database. Adding the second cell may comprise indicating an association between the first cell and the second cell in the fingerprinting database.
Abstract:
Facilitating user terminal (UT) access to wireless networks having base stations (BSs) of disparate access types is described herein. In some aspects, BS parameterization is provided to facilitate search and/or access to distinct types of network BSs. For instance, parameters can modify a likelihood of identifying or remaining coupled to restricted access (RA) BSs in a home Node B (HNB) deployment. In other aspects of the subject disclosure, a PLMN ID reserved for HNBs is provided comprising multiple region IDs. Where a UT identifies a home region, HNBs can be given preference over macro BSs. Additionally, the UT can keep track of HNBs and HNB regions that reject access to the UT, and implement a delay time to mitigate rapid signaling to foreign HNBs in a dense HNB deployment. Accordingly, the subject disclosure provides for more efficient UT access in heterogeneous access type networks.
Abstract:
Systems and methodologies are described herein that facilitate improved cell search and selection in a wireless communication system. For example, a terminal as described herein can utilize one or more Closed Subscriber Group (CSG)-specific offset and/or hysteresis parameters as described herein to increase the amount of time on which the terminal is allowed to camp on a desirable cell. Additionally, specialized reselection timing can be employed as described herein to increase a delay associated with selecting a Home Node B (HNB) or Home Evolved Node B (HeNB) cell, thereby reducing power consumption associated with rapid cell reselection operations in a densely populated network environment. Further, a two-step reselection process can be performed as described herein in the context of selecting a frequency for cell reselection, thereby mitigating the effects of rapid reselection between cells and/or frequencies due to CSG cell prioritization.