Abstract:
In various aspects, the disclosure provides user equipment (UE) capable of conducting a public land mobile network (PLMN) search by determining a paging schedule for a serving cell of the UE, the serving cell being associated with a first PLMN and the paging schedule defining one or more paging occasions. The UE may initiate a search for a second PLMN between consecutive paging occasions, and may read information blocks on a broadcast channel of a cell of the second PLMN. The UE may discontinue reading a partially-read information block when the partially-read information block is scheduled for transmission at least partially concurrently with a paging occasion on the serving cell if the partially-read information block does not include information for identifying the second PLMN. The UE may ignore the first paging occasion when the partially-read information block includes the information for identifying the second PLMN.
Abstract:
Methods and apparatuses for improved uplink establishment in wireless networks are presented. For example, a method of mobile communication at a user equipment is presented that may include receiving, at a user equipment (UE) and from a network entity, configuration information associated with an enhanced uplink in CELL_FACH state protocol, wherein the UE is configured to transmit uplink transmissions according to the enhanced uplink in CELL_FACH state protocol. Additionally, the example method may include determining that the configuration information includes invalid configuration information. Moreover, the example method may include performing at least one remedial action to ensure that the UE is able to transmit the uplink transmissions based on determining that the configuration information includes invalid configuration information.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may communicate with a base station according to a first radio access technology (RAT) in a first frequency range. The UE may perform measurements on a set of candidate cells of a second RAT or a second frequency range based on a determination for the UE to operate according to the second RAT or the second frequency range. The UE may perform a mobility procedure to establish a connection with a first cell of the set of candidate cells based on a determination that a first value of a first measurement parameter for the first cell satisfies a first threshold, and further based on a comparison of a different, second value of a second measurement parameter for the first cell to a second threshold.
Abstract:
Methods, systems, and devices for wireless communications are described. An example method includes performing transmission or receive beam measurements at two or more wireless antennas of a wireless device, selecting a serving beam pair based at least in part on the transmission or receive beam measurements, and presenting an indication at the wireless device corresponding to the selected serving beam pair. The method may further include detecting user obstruction of part of the selected serving beam pair. The method may also include determining that a transmission power restriction applies to a first antenna associated with the selected transmission beam based at least in part on the transmission or receive beam measurements. Other example methods may further include detecting a change in an orientation of the wireless device and performing the transmission or receive beam measurements in response to detecting the change in the orientation of the wireless device.
Abstract:
Various aspects of the present disclosure enable a plurality of mobile devices (UEs) within a cell to spread out in time their respective transmissions of signaling messages, such as cell update messages, when the network enables or disables enhanced uplink (EUL, sometimes referred to as high-speed uplink packet access or HSUPA) while the UE is in the CELL_FACH state, by changing SIB5 or SIB5bis. In this way, the network load may be reduced, and a network blockage that otherwise might result from large numbers of UEs simultaneously transmitting the cell update message can be avoided. According to one example, a network node may be configured to distribute CELL_UPDATE messages or procedures to UEs when the network node enables or disables EUL in CELL_FACH by changing SIB5 or SIB5bis over time to reduce the network load. According to another example, a UE may be configured for utilizing a random timer or back-off timer to defer cell updates.
Abstract:
Apparatus and methods are described for selecting or identifying a first band number from one or more additional band numbers mapped to a frequency division duplexing (FDD) band used in universal mobile telecommunications (UMTS). The one or more additional band numbers may be different from a second band number assigned to the FDD band. Each of the one or more additional band numbers may correspond to a different factor N (e.g., N=2, N=4) for use in UMTS scaling. A signal indicative of the first band number may be transmitted to, for example, a network entity, where the signal indicates support of UMTS scaling operations in the FDD band using the factor N corresponding to the first band number.
Abstract:
Methods, systems, and devices for wireless communications are described. An example method includes performing transmission or receive beam measurements at two or more wireless antennas of a wireless device, selecting a serving beam pair based at least in part on the transmission or receive beam measurements, and presenting an indication at the wireless device corresponding to the selected serving beam pair. The method may further include detecting user obstruction of part of the selected serving beam pair. The method may also include determining that a transmission power restriction applies to a first antenna associated with the selected transmission beam based at least in part on the transmission or receive beam measurements. Other example methods may further include detecting a change in an orientation of the wireless device and performing the transmission or receive beam measurements in response to detecting the change in the orientation of the wireless device.
Abstract:
Aspects of the present disclosure generally relate to managing decoding of system information blocks (SIBs) at a user equipment (UE) and managing SIB transmissions at a base station. For example, the described aspects at the UE may include detecting a trigger event for decoding one or more SIBs received from a cell and determining to avoid decoding of at least one SIB received from the cell in response to the detected trigger event and a mobility pattern of the UE. The described aspect at the UE may further include using a stored version of the at least one SIB for communication with the first cell.
Abstract:
Methods, systems, and devices are described for handling over-sized call setup messages are disclosed. A user equipment (UE) may identify the size of a connection setup message (e.g., RRC connection setup complete message) associated with one or more UE capability information. Based on the identified size of the connection setup message, the UE may determine an estimated time required to transmit the connection setup message to a network entity (e.g., base station) over at least one uplink channel and determine whether the estimated time is above or below a threshold. If the UE determines that the estimated time to transmit the connection setup message is greater than the threshold, the UE may remove at least a portion of the connection setup message and transmit a modified connection setup message.
Abstract:
Systems, methods, and devices providing a framework which reduces the amount of switching required by single transceiver hardware chain mobile devices operating multiple cellular technology and/or service stacks. The various embodiments enable two or more service stacks on the mobile device of various cellular technologies (e.g., 3GPP GSM, UMTS, LTE, WCDMA, etc), to share information, such as network measurements. The various embodiments may also enable one service stack to perform procedures for and provide information to another service stack.