Abstract:
A transformer has a first winding, a second winding and a third winding. The first winding is configured to receive a first signal. The second winding is magnetically coupled to the first winding and configured to generate a second signal through electromagnetic induction with the first winding, or by receiving a second input signal. The third winding is magnetically coupled to the second winding, magnetically isolated from the first winding, and configured to generate a third signal through electromagnetic induction with the second winding. The second winding is posited between the first winding and the third winding. The first winding is posited adjacent to the second winding, and the second winding is posited adjacent to the third winding.
Abstract:
A bandgap reference circuit includes a voltage generation circuit, a capacitor and a clamping control circuit. The voltage generation circuit is used to generate a current on an operation terminal. The capacitor includes a first terminal coupled to the operation terminal, and a second terminal coupled to a first reference voltage terminal. The clamping control circuit is coupled between the operation terminal and a second reference voltage terminal. The clamping control circuit includes a switch and a clamping unit, and is used to allow part of the current flowing through the clamping unit to the second reference voltage terminal when the switch is turned on.
Abstract:
A bias circuit includes a first transistor, a second transistor, a first resistor and a second resistor. The first end of the first transistor is coupled to a first voltage source. One end of the first resistor is coupled to the second end of the first transistor, and the other end of the first resistor is coupled to the control terminal of the first transistor. The first end of the second transistor is coupled to a second voltage source, and the second end of the second transistor is coupled to the control terminal of the first transistor. One end of the second resistor is coupled to the other end of the first resistor, and the other end of the second resistor is coupled to the control terminal of the second transistor.
Abstract:
A clamp logic circuit has a logic circuit, a control terminal, a current clamp circuit and an output terminal. The logic circuit has at least a junction field-effect transistor (JFET). The control terminal receives an input signal. The current clamp circuit has a transistor and a resistor. A first end of the transistor is coupled to the control terminal, a second end of the transistor is coupled to a first end of the resistor, a control end of the transistor is coupled to a reference voltage, and a second end of the resistor is coupled to an input end of the logic circuit. The output terminal is coupled to an output end of the logic circuit.
Abstract:
An antenna system includes N integrated passive components (IPCs). A first end of each IPC of the N IPCs is directly configured to couple to an antenna for receiving signals of a band corresponding to the IPC and filtering signals of bands corresponding to other IPCs of the N IPCs. The antenna system can prevent signals of various bands from interfering with each other, reduces parasitic capacitance effect, and further improves nonlinear distortion.
Abstract:
A power supply includes a voltage regulator, a transistor, a current-to-voltage transform circuit, and a comparator. The voltage regulator receives a control signal, a source voltage, and a control voltage, and outputs a supply voltage according to the control voltage and the control signal. The transistor has a first terminal receiving the source voltage, and a control terminal coupled to the voltage regulator. The current-to-voltage transform circuit has a first terminal coupled to a second terminal of the transistor, a second terminal for receiving a reference voltage. The comparator has a first input terminal for receiving a comparison signal, a second input terminal coupled to the first terminal of the current-to-voltage transform circuit, and an output terminal for outputting the control voltage.
Abstract:
An active circuit includes an active element, an input unit, and a bypass unit. The active element is coupled to an output terminal of the active circuit for outputting an output signal. The input unit is coupled to an input terminal of the active circuit, and is coupled to an input terminal of the active element through a node. The input unit adjusts a capacitance value of the input unit according to a first control signal. The bypass unit is coupled to an output terminal of the input unit through the node, and is coupled to the output terminal of the active circuit. The bypass unit turns on or off a signal bypassing path according to a second control signal.
Abstract:
A voltage generator including an oscillator having an output, a charge pump having an input and an output, the input of the charge pump being coupled to the output of the oscillator, a smoothing capacitor, a resistor having an input end and an output end, wherein the input end is coupled to the charge pump and the output end is coupled to the smoothing capacitor, and a shorting element connected in parallel with the resistor and which, when turned on, causes the resistor to be at least partially bypassed, wherein the voltage generator is configured to supply voltage to a radio frequency (RF) switch via the smoothing capacitor, and a frequency of the oscillator is controlled to be faster during a switching period of the RF switch.
Abstract:
An antenna system includes an antenna and N integrated passive components (IPCs). A first end of each IPC of the N IPCs is directly coupled to the antenna for receiving signals of a band corresponding to the IPC and filtering signals of bands corresponding to other IPCs of the N IPCs. The antenna system can prevent signals of various bands from interfering with each other, reduces parasitic effect, and further improves nonlinear distortion.