Abstract:
A method for manufacturing a semiconductor device includes forming a fin structure including a well layer, an oxide layer disposed over the well layer and a channel layer disposed over the oxide layer. An isolation insulating layer is formed so that the channel layer of the fin structure protrudes from the isolation insulating layer and a part of or an entirety of the oxide layer is embedded in the isolation insulating layer. A gate structure is formed over the fin structure. A recessed portion is formed by etching a part of the fin structure not covered by the gate structure such that the oxide layer is exposed. A recess is formed in the exposed oxide layer. An epitaxial seed layer in the recess in the oxide layer. An epitaxial layer is formed in and above the recessed portion. The epitaxial layer is in contact with the epitaxial seed layer.
Abstract:
The present disclosure relates to a Fin field effect transistor (FinFET) device having epitaxial enhancement structures, and an associated method of fabrication. In some embodiments, the FinFET device has a semiconductor substrate having a plurality of isolation regions overlying the semiconductor substrate. A plurality of three-dimensional fins protrude from a top surface of the semiconductor substrate at locations between the plurality of isolation regions. Respective three-dimensional fins have an epitaxial enhancement structure that introduces a strain into the three-dimensional fin. The epitaxial enhancement structures are disposed over a semiconductor material within the three-dimensional fin at a position that is more than 10 nanometers above a bottom of an adjacent isolation region. Forming the epitaxial enhancement structure at such a position provides for sufficient structural support to avoid isolation region collapse.
Abstract:
The present disclosure relates to a Fin field effect transistor (FinFET) device having a buried silicon germanium oxide structure configured to enhance performance of the FinFET device. In some embodiments, the FinFET device has a three-dimensional fin of semiconductor material protruding from a substrate at a position located between first and second isolation regions. A gate structure overlies the three-dimensional fin of semiconductor material. The gate structure controls the flow of charge carriers within the three-dimensional fin of semiconductor material. A buried silicon-germanium-oxide (SiGeOx) structure is disposed within the three-dimensional fin of semiconductor material at a position extending between the first and second isolation regions.