Abstract:
A wearable medical device includes a water-resistant/waterproof housing configured to be continuously or nearly continuously worn by a patient and formed from a water-resistant/waterproof material, and configured to prevent ingress of water in a wet environment; a plurality of ECG sensing electrodes configured to be removably coupled to the patient and to monitor an ECG of the patient; a plurality of therapy electrodes configured to be removably coupled to the patient and to deliver at least one therapeutic pulse to the patient; and a control unit disposed within the water-resistant/waterproof housing and configured to be electrically coupled to the plurality of ECG sensing electrodes and the plurality of therapy electrodes, the control unit configured to receive the monitored ECG of the patient, and responsive to detection of a cardiac arrhythmia, provide the at least one therapeutic pulse to the patient via the at least one therapy electrode.
Abstract:
A system includes an ambulatory medical device and a server. The ambulatory medical device comprises: a digital signal processing module configured to: detect an abnormal rhythm from an electrocardiogram (ECG) signal of a patient using a first signal processing routine; and generate a first flag indicating an abnormal rhythm is detected; and a noise detector module configured to: receive the ECG signal from the digital signal processing module; execute a second signal processing routine to classify the abnormal rhythm as one of an arrhythmia event and a noise event; and, if the abnormal rhythm is classified as a noise event, initiate a preconfirmation period during which the noise detector module continues to evaluate the abnormal rhythm and classify the abnormal rhythm as one of an arrhythmia event and a noise event using the second signal processing routine; and generate a second flag indicating the start of the preconfirmation period; and a server configured to: receive the ECG signal, the first flag indicating the abnormal rhythm, and the second flag indicating the start of the preconfirmation period; and provide a visual indication of the preconfirmation period.
Abstract:
A wearable therapeutic device includes a garment configured to be worn on a torso of a patient. The garment has an anterior portion and a posterior portion. The garment is configured to house at least one defibrillator component, a first therapy electrode disposed in the anterior portion of the garment, a second therapy electrode disposed in the posterior portion of the garment, and an alarm module configured to alert the patient of an impending defibrillation shock from the at least one defibrillator component to be delivered by at least one of the first therapy electrode and the second therapy electrode. The first therapy electrode and the second therapy electrode are configured to be electrically coupled to the at least one defibrillator component. At least one of the first therapy electrode and the second therapy electrode is at least one of woven into the garment and comprises a textile material.
Abstract:
A system including an ambulatory medical treatment device is provided. The ambulatory medical treatment device includes a memory, a treatment component configured to treat a patient, at least one processor coupled to the memory and the treatment component, a user interface component, and a system interface component. The user interface component is configured to receive an update session request and to generate the update session identifier responsive to receiving the request. The system interface component is configured to receive an encoded request including an identifier of an update session and device update information, to decode the encoded request to generate a decoded request including the device update information and the identifier of the update session, to validate the decoded request by determining that the update session identifier matches the identifier of the update session, and to apply the device update information to the ambulatory medical treatment device.
Abstract:
A wearable therapeutic device includes a garment configured to be worn on a torso of a patient. The garment has an anterior portion and a posterior portion. The garment is configured to house at least one defibrillator component, a first therapy electrode disposed in the anterior portion of the garment, a second therapy electrode disposed in the posterior portion of the garment, and an alarm module configured to alert the patient of an impending defibrillation shock from the at least one defibrillator component to be delivered by at least one of the first therapy electrode and the second therapy electrode. The first therapy electrode and the second therapy electrode are configured to be electrically coupled to the at least one defibrillator component. At least one of the first therapy electrode and the second therapy electrode is at least one of woven into the garment and comprises a textile material.
Abstract:
In one example, an ambulatory medical device is provided. The ambulatory medical device includes a plurality of subsystems, at least one sensor configured to acquire data descriptive of a patient, a user interface and at least one processor coupled to the at least one sensor and the user interface. The at least one processor is configured to identify subsystem status information descriptive of an operational status of each subsystem of the plurality of subsystems and to provide a device health report for the ambulatory medical device via the user interface, the device health report being based on the operational status of each subsystem.
Abstract:
A wearable device and method of monitoring the condition of a patient. The wearable device includes at least one sensor and at least one processor operatively connected to the at least one sensor. The wearable device also includes an operator interface device operatively connected to the at least one processor. The at least one processor causes the device to allow for customization of at least one output message to be delivered via the operator interface device.
Abstract:
An external medical device includes at least one therapy electrode configured to be disposed on a patient; and a treatment manager configured to execute a baseline process to determine at least one of a range of values for a discomfort parameter and a patient discomfort threshold value corresponding to the at least one pacing routine, detect a cardiac condition of the patient, execute the at least one pacing routine, the at least one pacing routine being associated with the cardiac condition, monitor the discomfort parameter during execution of the at least one pacing routine, determine whether the discomfort parameter transgresses the at least one of the range of values and the patient discomfort threshold value, and adjust at least one characteristic of the at least one pacing routine upon the discomfort parameter transgressing the at least one of the range of values and the patient discomfort threshold value.
Abstract:
A cardiac monitoring system includes an externally wearable cardiac monitoring device; at least one cardiac sensing electrode operatively coupled to the device and configured to be disposed in proximity to a patient's skin to monitor cardiac activity of the patient; at least one accelerometer configured to generate signals indicative of patient body movement; and a microcontroller disposed in the device and configured to receive the signals indicative of patient body movement, receive one or more electrocardiogram (ECG) signals of the patient from the at least one cardiac sensing electrode, and analyze the one or more ECG signals received over a period of time to determine at least one cardiac arrhythmia condition of the patient; the device being configured to wirelessly transmit data related to the at least one cardiac arrhythmia condition and the signals indicative of patient body movement recorded over the period of time to a central server.
Abstract:
A system and method for conservation of battery power in a portable medical device is provided. In one example, a processor arrangement that includes a plurality of processors is implemented. At least one of these processors is configured to execute the critical functions of the medical device, while one or more other processors assume a reduced service level, thereby drawing significantly less power. According to this arrangement, the medical device conserves energy by drawing the additional electrical power needed to activate the additional processing power only when needed.