Abstract:
A method for driving a touch panel that detects and compensates a double touch includes sequentially inputting coordinate values of touched points on the touch panel at predetermined time intervals, measuring a variation of the inputted coordinate values, determining the inputted coordinate values as a double touch when the measured variation is greater than a predetermined value, and compensating the inputted coordinate values if determined as a double touch.
Abstract:
A liquid crystal display device includes a liquid crystal display panel; a first polarizer on a first surface of the liquid crystal display panel; a second polarizer on a second surface of the liquid crystal display panel; and a first light path control film on a first surface of the second polarizer to refract the light polarized by the second polarizer to a direction minimizing a gray inversion on a display surface of the liquid crystal display panel.
Abstract:
A touch panel device includes a wiring terminal, a flexible printed circuit film connected to the wiring terminal, an adhesion part corresponding to a location where the flexible printed circuit film is connected to the wiring terminal, and an adhesion-reinforcing part adjacent to the adhesion part for strengthening an adhesive bonding strength of the adhesion part.
Abstract:
An apparatus for driving a liquid crystal display that includes a normal driving interval for providing normal driving of the liquid crystal display with a real-data signal after a reset period, wherein the liquid crystal display includes a liquid crystal between pixel and common electrodes in which the liquid crystal is transitioned from a splay state into a bend state at a voltage difference between the pixel and common electrodes greater than a transition voltage. The apparatus includes a reset circuit for setting a voltage difference between the pixel electrode and the common electrode during the reset period to be larger than an average voltage of the real-data signal in said normal driving interval and a controller for controlling voltages that are supplied to at least one of the pixel electrode and the common electrode.
Abstract:
A liquid crystal display device and fabricating method thereof are disclosed, by which insufficient or excessive filling of liquid crystals can be cured by adjusting a liquid crystal quantity in a liquid crystal display device having the insufficient or excessive filling of liquid crystals generated thereon. The present invention includes the steps of preparing a liquid crystal cell including a first substrate, a second substrate and a liquid crystal layer between the first and second substrates, checking a liquid crystal quantity within the liquid crystal cell, forming a hole in the liquid crystal cell, adjusting the liquid crystal quantity through the hole, and blocking the hole.
Abstract:
A backlight assembly includes light emitting diodes in patterns, a reflective sheet having a plurality of through holes through which the light emitting diodes protrude, and a sidewall dividing the patterns into a plurality of light emitting diode units.
Abstract:
A method of manufacturing a liquid crystal display, the method including the steps of preparing a substrate, forming a first pattern on a first print roll, forming a first print pattern using the first print roll applied in a first direction, forming a second pattern on a second print roll, and forming a second print pattern using the second print roll applied in a second direction.
Abstract:
A liquid crystal display device includes a lower substrate, an upper substrate facing the lower substrate, a common electrode and a plurality of data electrodes on the lower substrate to generate an In-Plane switching mode electric field parallel to the lower and upper substrates, and a liquid crystal layer having a helical alignment between the lower and upper substrates.
Abstract:
An array substrate for a transflective liquid crystal display device includes: a substrate; a gate line and a data line on the substrate, the gate line and the data line crossing each other to define a pixel region including a transmissive area and a reflective area surrounding the transmissive area; a thin film transistor having a gate insulating layer, the thin film transistor electrically connected to the gate line and the data line; a first passivation layer having a drain contact hole exposing a drain electrode of the thin film transistor and a through hole exposing the substrate in the transmissive area; a pixel electrode on the first passivation layer, the pixel electrode contacting the substrate in the transmissive area through the through hole; and a reflective plate on the pixel electrode, the reflective plate being electrically connected to the drain electrode through the drain contact hole and to the pixel electrode.
Abstract:
A liquid crystal display module according to an embodiment of the present invention includes a lamp to generate light; a light guide panel to convert an incident light from the lamp into a surface light, having a first refractive index; a low refractive index layer fixed on the light guide panel, having a second refractive index, which is relatively lower than the first refractive index, so as to have the light incident to the light guide panel totally reflected on the border area with the light guide panel; and a reflective type of liquid crystal display panel to realize a picture by reflecting the light going out from the low refractive index layer.