Abstract:
A method for manufacturing a micromechanical component is described, including the steps of: forming a first etch stop layer on a base substrate, the first etch stop layer being formed in such a way that it has a first pattern of through-cutouts; forming a first electrode-material layer on the first etch stop layer; forming a second etch stop layer on the first electrode-material layer, the second etch stop layer being formed in such a way that it has a second pattern of through-cutouts differing from the first pattern; forming a second electrode-material layer on the second etch stop layer; forming a patterned mask on the second electrode-material layer; and carrying out a first etching step in a first direction and a second etching step in a second direction counter to the first direction in order to etch at least one first electrode unit out of the first electrode-material layer and to etch at least one second electrode unit out of the second electrode-material layer. Also described are micromechanical components.
Abstract:
Method for manufacturing a semiconductor device includes the steps of forming a lower electrode pattern on a substrate, forming a first interlayer insulating layer on the lower electrode pattern, forming an upper electrode pattern on the first interlayer insulating layer, forming a second interlayer insulating layer on the upper electrode pattern, forming an etch blocking layer on a side of the upper electrode pattern, wherein the etch blocking layer passes through the first interlayer insulating layer, forming a cavity which exposes the side of the etch blocking layer by etching the second interlayer insulating layer, and forming a contact ball in the cavity.
Abstract:
An embodiment of the present invention relates to a chip package and fabrication method thereof, which includes a chip protection layer or an additional etching stop layer to cover conducting pads to prevent dicing residue from damaging or scratching the conducting pads. According to another embodiment, a chip protection layer, an additional etching stop layer formed thereon, or a metal etching stop layer level with conducting pads or combinations thereof may be used when etching an intermetal dielectric layer at a structural etching region and a silicon substrate to form an opening for subsequent semiconductor manufacturing processes.
Abstract:
A method for producing a MEMS component including the steps of simultaneously embedding structure elements during producing the multi-level conductive path layer stack which structure elements are to be subsequently exposed, subsequently producing a recess that extends from a substrate backside to the multi-level conductive path layer stack, exposing the micromechanical structure elements in the multi-level conductive path layer stack through the recess. In order to increase process precision a reference mask for defining a lateral position or a lateral extension of the micromechanical structure elements to be exposed is produced, wherein the reference mask is either arranged on the substrate front side between the substrate and the multi-level conductive path layer stack or in a layer of the multi-level conductive path layer stack which layer is more proximal to the substrate than the structure element to be exposed.
Abstract:
An etching method and an etching system are adapted to produce a high etch selectivity for a mask, an excellent anisotropic profile and a large etching depth. An etching system according to the invention comprises a floating electrode arranged vis-à-vis a substrate electrode in a vacuum chamber and held in a floating state in terms of electric potential, a material arranged at the side of the floating electrode facing the substrate electrode to form an anti-etching film and a control unit for intermittently applying high frequency power to the floating electrode. An etching method according to the invention uses a material arranged at the side of the floating electrode opposite to the substrate electrode to form an anti-etching film as target and only rare gas as main gas and is adapted to repeat a step of forming a film on the substrate by sputtering by applying high frequency power to the floating electrode and a step of subsequently etching the substrate by suspending the application of high frequency power to the floating electrode and introducing etching gas into the vacuum chamber in a predetermined sequence.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material surrounded by a protective material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a sacrificial material.
Abstract:
The invention relates to a method of fabricating an electromechanical device including an active element, wherein the method comprises the following steps:a) making a monocrystalline first stop layer on a monocrystalline layer of a first substrate;b) growing a monocrystalline mechanical layer epitaxially on said first stop layer out of at least one material that is different from that of the stop layer;c) making a sacrificial layer on said active layer out of a material that is suitable for being etched selectively relative to said mechanical layer;d) making a bonding layer on the sacrificial layer;e) bonding a second substrate on the bonding layer; andf) eliminating the first substrate and the stop layer to reveal the surface of the mechanical layer opposite from the sacrificial layer, the active element being made by at least a portion of the mechanical layer.
Abstract:
An embodiment of the present invention relates to a chip package and fabrication method thereof, which includes a chip protection layer or an additional etching stop layer to cover conducting pads to prevent dicing residue from damaging or scratching the conducting pads. According to another embodiment, a chip protection layer, an additional etching stop layer formed thereon, or a metal etching stop layer level with conducting pads or combinations thereof may be used when etching an intermetal dielectric layer at a structural etching region and a silicon substrate to form an opening for subsequent semiconductor manufacturing processes.
Abstract:
This describes a starting structure and method for forming a micro-mechanical device. These devices have several uses in both government and commercial applications. The starting structure can be sold or supplied to others who will then make a final product, or it can be used directly to make a final product. An appropriate use of this starting structure is to make deformable devices useful in an inkjet printing device.
Abstract:
The present invention discloses a MEMS device with guard ring, and a method for making the MEMS device. The MEMS device comprises a bond pad and a sidewall surrounding and connecting with the bond pad, characterized in that the sidewall forms a guard ring by an etch-resistive material.