Abstract:
Method and apparatus for controlling at least one generator and a Static Var Compensator (SVC) to improve dynamic performance of the power plant are provided. The method comprises: obtaining the required input parameters for control of said generators and SVC; determining a control mode of the generators and the SVC; calculating the control references based on the input parameters and the control mode of the generators and the SVC; and controlling the generators and/or the SVC according to the control references. The invention also relates to a corresponding apparatus which can implement the method of the invention.
Abstract:
Diagnosis for GOOSE communication is provided. The embodiments of the present invention provide a method, an apparatus, a system and a computer program product of diagnosis for logic of a distributed application implemented based on Generic Object Oriented Substation Event (GOOSE). The method comprises: creating at least one logic diagnosis module based on a data model for the distributed application; obtaining GOOSE signal information; and executing the at least one logic diagnosis module based on the GOOSE signal information. According to the embodiments of the present invention, a feasible way is provided for diagnosing and/or analyzing the logic of GOOSE-based application online or offline.
Abstract:
A socket is provided for removing or installing a fastener having a hexagonally shaped portion. The socket includes a body having a longitudinal axis and opposing first and second ends. First surfaces define a tool-receiving portion at the first end. The tool-receiving portion is constructed and arranged to receive a portion of a tool. Second surfaces define a socket portion at the second end. The socket portion is constructed and arranged to receive and engage the portion of the fastener therein. Holding structure is associated with the socket portion and is constructed and arranged to non-magnetically hold the portion of the fastener in the socket portion so as to not fall out of the socket portion, either due to friction or vacuum, without providing torque to the fastener when the socket is rotated during installation or removal of the fastener.
Abstract:
A method and device are disclosed for supervising the operation of plural current transformers and for prevention of a malfunction, such as false tripping of power in an electrical system. Exemplary embodiments can include measuring current parameters (e.g., magnitude and phase angle) for each winding in current transformer (CT) sets. A negative sequence current can be calculated from measured phase currents and a fault condition determined. A phase angle difference parameter derived from phase measurements between two healthy CTs can be used as an additional condition parameter for reliable operation of equipment in the electrical system.
Abstract:
An interface is disclosed for a self powered protection relay that uses mechanical switches for its configuration. The protection relay can include a base relay for measurement of line current and for generation of a trip signal, and a Human Machine Interface (HMI) unit for specifying, by a user, a base setting of an operating parameter of the protection relay. The base relay can be self-powered from the line and the HMI unit can include an auxiliary power supply. The protection relay is configured with mechanical switches provided in the protection relay. The HMI unit in the protection relay is designed to detect and alert the user of the relay of any change in the base setting carried out with one or more mechanical switches provided in the relay in powered and unpowered conditions of the base relay.
Abstract:
A synchronous machine system comprising a synchronous motor including a stator, stator winding, rotor, and field winding; an AC power supply circuit structured to transmit current to or from the stator winding of the synchronous motor at a controlled frequency and transmit current to or from a power source at a controlled frequency; a DC exciter unit structured to receive power from a power source, convert the received power to DC power at a desired voltage, and supply the converted power across a DC bus to the field winding of the synchronous motor; and an energy storage circuit coupled to the DC bus of the DC exciter unit having at least one ultracapacitor, and structured to receive power from a power source, to charge the ultracapacitor, and to provide power to the field winding of the synchronous motor following a power failure.
Abstract:
A unique electrical system includes a first electrical component and a second electrical component. A conductor electrically couples the first electrical component with the second electrical component. A sensor is constructed to sense an AC power flow in the conductor and output an AC signal proportional to the AC power flow. A band-pass filter is in electrical communication with the sensor and constructed to receive and filter the AC signal and to generate an AC voltage proportional on the AC signal. A controller is in electrical communication with the band-pass filter, and is operative to receive and sample the AC voltage. The controller is configured to execute program instructions to sum sequential AC voltage values received from the band-pass filter over a sample time period, and to determine whether an arc fault has occurred based on the summed AC voltage values.
Abstract:
A microgrid is re-synchronized to a main grid or substation by determining a degree of bus angle or frequency mismatch and bus voltage mismatch between the microgrid and the main grid or substation prior to re-synchronization, determining an amount of power adjustment needed to reduce the bus angle or frequency mismatch and bus voltage mismatch to below respective predetermined thresholds, determining at least one participation factor for each microgrid bus, each participation factor indicating an amount of influence power injection by the corresponding bus has on the bus angle or frequency mismatch or on the voltage mismatch, allocating the amount of power adjustment to the microgrid buses in proportion to the participation factors assigned to the buses, and re-synchronizing the microgrid to the main grid or substation responsive to the bus angle or frequency mismatch and bus voltage mismatch satisfying the respective predetermined thresholds.
Abstract:
Unique systems, methods, techniques and apparatuses of zero-voltage transition pulse width modulation resonant converters are disclosed. One exemplary embodiment is a zero-voltage transition PWM resonant converter comprising a DC bus, a first switching device, a second switching device, a resonant tank circuit, an auxiliary circuit having a flying capacitor and a plurality of auxiliary switching devices, and a controller. The controller is structured to control the first switching device, the second switching device, and the plurality of auxiliary switching devices to provide resonant operation of the tank circuit effective to provide a substantially zero voltage condition across the first switching device when turning the first switching device on or off and to provide a substantially zero voltage condition across the second switching device when turning the second switching device on or off.
Abstract:
A voltage source converter includes a number of valves, the valves including switching elements with anti-parallel diodes provided in a bridge for switching between two states. The bridge is provided in at least one phase leg that stretches between two direct current poles and has at least one midpoint, which is connected to an alternating current terminal. The switching element of at least one valve is a thyristor. The converter further includes a commutation cell associated with the valve, where the commutation cell is controllable to reverse-bias the valve if it is to stop conducting current.