Abstract:
Sensor-integrated prosthetic valves that can comprise a variety of features, including a plurality of valve leaflets, a frame assembly configured to support the plurality of valve leaflets and define a plurality of commissure supports terminating at an outflow end of the prosthetic valve, a sensor device associated with the frame assembly and configured to generate a sensor signal, for example, a sensor signal indicating deflection of one or more of the plurality of commissure supports, and a transmitter assembly configured to receive the sensor signal from the sensor device and wirelessly transmit a transmission signal that is based at least in part on the sensor signal.
Abstract:
A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander. An inflow stent frame is expandable for anchoring the valve in place, and may have an outflow end that is collapsible to a limited degree for delivery and expandable post-implant to facilitate a valve-in-valve (ViV) procedure. The hybrid heart valves eliminate earlier structural bands, which both reduces manufacturing time and facilitates a ViV procedure.
Abstract:
A cardiac implant system including a cardiac implant such as an annuloplasty ring, a prosthetic heart valve, or a valved conduit pre-assembled at the time of manufacture with devices for securing the implant to a heart valve annulus using knotless suture fasteners. The knotless suture fasteners may be embedded within a pliant sealing edge of the cardiac implant, or they may be positioned adjacent to the sealing edge. The knotless suture fasteners are spring-biased so as to grip onto annulus anchoring sutures pass to therethrough upon removal of a restraining device, such as a hypotube inserted within the suture fasteners. Guide tubes are assembled in line with the suture fasteners to permit introduction of suture snares that pass through the suture fasteners and through the sealing edge to facilitate capture of the pre-installed annulus anchoring sutures.
Abstract:
A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
Abstract:
A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein is disclosed, together with methods of using same. The prosthetic heart valve may be configured to have a generally rigid and/or expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
Abstract:
Disclosed herein is a prosthetic heart valve, and associated methods therefore, configured to replace a native heart valve, and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein. The prosthetic heart valve is configured to have an expansion-resistant configuration when initially implanted to replace a native valve (or other prosthetic heart valve), but to assume a generally expanded form when subjected to an outward force such as that provided by a dilation balloon or other mechanical expander.
Abstract:
A dynamic, adjustable annuloplasty ring sizer can include an adjustable ring replica, which can be adjusted through a range of sizes corresponding to available prosthetic annuloplasty repair ring sizes. Actuation of an adjustment trigger on a handle portion of the ring sizer can displace tension wires that extend through a malleable shaft and through a plurality of articulating segments that form the ring replica. Displacement of the tension wires causes flexion of the joints between adjacent articulating segments, thereby reducing the overall size of the ring replica. Releasing the tension wires can allow an elastic extension wire to act on the ring replica, enlarging the ring replica to its maximum, at-rest size. In this manner, the appropriate size of annuloplasty ring prosthesis can be determined with a single device, without requiring a plurality of static ring sizers that require individual insertion and placement for the conventional trial-and-error sizing methods.
Abstract:
A heart valve sizer and sizer cover are provided for determining the size of a heart valve annulus. The valve sizer can include a handle, a shaft extending distally from the handle, a sizing element coupled to the distal end of the shaft, the sizing element being movable between a first retracted position and a second expanded position, and a sizer cover. The sizer cover can be formed from a continuous sheet of material configured to surround at least a portion of the sizing element of the heart valve sizer so as to guard against entanglement of the sizing element with structures of a human heart.
Abstract:
A dynamic, adjustable annuloplasty ring sizer can include an adjustable ring replica, which can be adjusted through a range of sizes corresponding to available prosthetic annuloplasty repair ring sizes. Actuation of an adjustment trigger on a handle portion of the ring sizer can displace tension wires that extend through a malleable shaft and through a plurality of articulating segments that form the ring replica. Displacement of the tension wires causes flexion of the joints between adjacent articulating segments, thereby reducing the overall size of the ring replica. Releasing the tension wires can allow an elastic extension wire to act on the ring replica, enlarging the ring replica to its maximum, at-rest size. In this manner, the appropriate size of annuloplasty ring prosthesis can be determined with a single device, without requiring a plurality of static ring sizers that require individual insertion and placement for the conventional trial-and-error sizing methods.
Abstract:
Suture locking clamps for securing prostheses such as heart valves or annuloplasty rings with sutures and without knots improve the ease of implantation. The clamps have opposed clamp halves separated by a slot opening to one side and surrounded by a biasing member such as one or more C-clip springs. Sutures pass laterally into the slot which is held open by a retention member positioned between the clamp halves. The locking clamp slides along the sutures into position, the tension of the sutures is adjusted, and the retention member removed to allow the biasing member to clamp the sutures between the clamp halves. A delivery tool used to deliver and deploy the locking clamps contains a number of clamps within a delivery tube in a stack and bonded together for safety and a common retention member. The tool has a longitudinal channel on one side for entry of sutures.