Abstract:
A method of deforming a pattern comprising the steps of: forming, over a substrate, a layered-structure with an upper surface including at least one selected region and at least a re-flow stopper groove, wherein the re-flow stopper groove extends outside the selected region and separate from the selected region; selectively forming at least one pattern on the selected region; and causing a re-flow of the pattern, wherein a part of an outwardly re-flowed pattern is flowed into the re-flow stopper groove, and then an outward re-flow of the pattern is restricted by the re-flow stopper groove extending outside of the pattern, thereby to form a deformed pattern with at least an outside edge part defined by an outside edge of the re-flow stopper groove.
Abstract:
In a liquid crystal display panel for displaying image data by driving a number of pixel areas in a matrix array with thin-film transistors, a thin-film transistor in a display part and a peripheral thin-film transistor are formed as thin-film transistor of the same size (i.e., outer shape).
Abstract:
An elastic member (3b) is fixed to a space between a front surface of an intermediate frame (4a) and a rear surface of a liquid crystal panel (2) constituting a liquid crystal display module (12), or a space between a rear surface of an upper frame (1) and the rear surface of the liquid crystal panel (2) constituting the liquid crystal display module (12). Alternatively, the elastic members (3b) are fixed to both of the spaces. A peak portion (14a) of the elastic member (3b) is formed to possess a flexible structure. The liquid crystal display module is configured to hermetically seal the space between a back light (11a) and the liquid crystal panel (2), the space between the upper frame (1) and the liquid crystal panel (2), or both of the spaces.
Abstract:
A LCD device has a black matrix defining a plurality of pixel areas in the LCD device. An interconnect layer formed on a TFT panel includes a first interconnect line passing through the pixel area and a second interconnect line passing outside the pixel area. The first interconnect line is lower in a product of a thickness thereof by a surface reflectance thereof than the second interconnect line.
Abstract:
A reflection type liquid crystal display device having excellent display capability even if the number of the photolithography process is reduced and a process for producing the device. A process includes the steps of (a) forming a source/drain wiring by using a first mask; (b) forming a thin film transistor region and gate wiring by using a second mask; (c) forming an opening for a transistor, in a passivation film by using a third mask; (d) forming a rough surface of the interlayer insulating film and to form an opening for the transistor by using a fourth mask by halftone exposure, and (e) forming a reflective metal which extend through the respective openings for the transistor in the passivation film and the interlayer insulating film so that it is electrically connected to the source wiring by using a fifth mask.
Abstract:
To make the test probe not directly in contact with the electrode pads for the semiconductor chip mounting, without using an advanced technology for making the pitch of electrode pads narrower, and remove the chip mounting failures such as scratching of electrode pads caused by testing, adherence of impurity particles, electrical corrosion.The electrode pads 13 formed on the distal ends of the external leads 5 for press-connecting the input electrodes 12 of the semiconductor chip 6 are disposed at both sides (shown as L1) of the semiconductor chip 6. The terminal-electrode leads 2 from the electrode pads 3 pass under the semiconductor chip 6 while keeping a pitch of the electrode pads 3. The test electrode pads 4 are disposed in alternate arrangement on the distal ends of terminal-electrode leads 2. The test electrode pads 4 may be disposed in alternate arrangement in three steps or more of multiple steps.
Abstract:
An in-plane switching mode active matrix type liquid crystal display device includes a first substrate, a second substrate located opposing the first substrate, and a liquid crystal layer sandwiched between the first and second substrates. The first substrate includes a thin film transistor, a pixel electrode each associated to a pixel to be driven, a common electrode to which a reference voltage is applied, data lines, a scanning line, and common electrode lines. Molecular axes of liquid crystal are rotated in a plane parallel with the first substrate by an electric field substantially parallel with a plane of the first substrate to thereby display certain images. The common electrode is composed of transparent material, and are formed on a layer located closer to the liquid crystal layer than the data lines. The common electrode entirely overlaps the data lines except an area where the data lines are located in the vicinity of the scanning line. The liquid crystal display device further includes a light-impermeable layer in an area where the common electrode entirely overlaps the data lines. The light-impermeable layer is comprised of a black matrix layer having a width smaller than a width of the common electrode.
Abstract:
A projection type liquid crystal display unit includes (a) a first frame (13) having a first surface (15) formed with a first opening (13a), (b) a second frame (12) having a second surface formed with a second opening (12a), and (c) a liquid crystal display panel (11) sandwiched between the first and second frames (13, 12) such that an incident light passes through the second opening (12a), the liquid crystal display panel (11) and the first opening (13a) in this order. The first and second frames (13, 12) are both composed of resin, and the first surface (15) of the first frame (13) is roughened.
Abstract:
Disclosed is a method of manufacturing a liquid crystal display device using a liquid crystal dispensation alignment method which includes steps of: removing inorganic ions and the like by performing a vacuum drying process on substrates after cleaning alignment layers on which a rubbing process has been performed; and removing foreign objects by performing any one of a process for sucking up foreign objects by use of a nozzle having a specialized shape and a process for blasting a gas to which ultrasonic waves have been applied against the foreign objects, before liquid crystal is dispensed. In addition, a temperature at which sealing material is cured completely is lowered in order to inhibit activation (migration) of organic matters and to thereby reduce visible defects such as alignment bright defects.
Abstract:
An in-plane-switching-mode (IPS) LCD device includes a TFT substrate and a CF substrate sandwiching therebetween a liquid crystal (LC) layer, and a pair of polarizing films sandwiching therebetween the TFT and CF substrates and LC layer. The TFT substrate includes a SiNx insulation layer having a higher refractive index compared to the TFT substrate and LC layer. The thickness (d) of the SiNx layer is expressed by d=(100+170×k)±30 where k is an integer not smaller than zero and not larger than 5. The protective layer of the light-incident-side polarizing film near the insulation film has a thickness larger than zero and not larger than 57 μm.