Abstract:
A four-stroke engine includes an oil tank, a crankshaft chamber, a distribution chamber, a rocker chamber, a combustion chamber, and a lubricating system. The oil tank is communicated with the crankshaft chamber through an oil supply channel. The four-stroke engine further comprises a cam and a transmission mechanism connected between the cam and a crankshaft of the crankshaft chamber in a matched manner. The cam is matched with a rocker of the rocker chamber and located above the combustion chamber.
Abstract:
A push pin actuator apparatus is provided. The push pin actuator apparatus includes a housing, a wire coil arranged within the housing and arranged around a first armature and a second armature. The first armature is coupled to a first push pin and the second armature is coupled to a second push pin. The push pin actuator apparatus further includes a first permanent magnet and a second permanent magnet arranged on opposing sides of the first armature, and a third permanent magnet and a fourth permanent magnet arranged on opposing sides of the second armature. The first push pin is actuated in response to a current being applied to the wire coil in a first direction, and the second push pin is actuated in response to a current being applied to the wire coil in a second direction opposite to the first direction.
Abstract:
A mechanically controllable valve drive for a reciprocating piston engine configured to adjust a gas exchange valve includes the gas exchange valve, a cam assembly comprising a camshaft and at least one cam for the gas exchange valve, a valve, a valve lift adjustment assembly, a drag lift assembly, and a device. The valve lift adjustment assembly comprises a valve lift adjustment device, and an intermediate lever assembly comprising at least one intermediate lever comprising a working curve comprising curve portions. The valve lift adjustment assembly is configured to shift the valve between a zero lift and a maximum lift. The drag lever assembly is operatively connected to the working curve. The device is configured to provide a valve-lift standstill range so that, in a maximum lift position, the valve is opened for a turning angle ω of the camshaft with a flattened valve lift height.
Abstract:
The invention relates to an opposed piston engine comprising at least one cylinder, at least two pistons arranged to be reciprocated within the same cylinder in an opposed manner, at least one intake port through the cylinder wall, at least one exhaust port through the cylinder wall, at least one shaft arranged to be rotated by reciprocal motion of the opposed pistons, at least one reciprocatable sleeve valve within the cylinder for controlling porting of one or both of the at least one intake port and the at least one exhaust port, a sleeve valve driving mechanism for controlling reciprocal motion of the at least one sleeve valve, and a dwell mechanism. The dwell mechanism is configured to induce at least one period of dwell of the at least two pistons during their respective cycles of piston motion.
Abstract:
Methods are provided for improved control of valve activation/deactivation mechanisms. One example method comprises, adjusting an electromechanical actuator to actuate cylinder valve deactivation/activation mechanisms. The actuator is operated at multiple levels based on engine operating conditions.
Abstract:
An electromagnetic valve apparatus with nonlinear springs for variable valve timing in an internal combustion engine. The apparatus includes a valve, floating spring assembly, translational cam, and motor. The cam and spring serve to minimize lash and valve stem bending forces. During opening and closing of the valve, spring potential energy is converted into valve kinetic energy and then back into potential energy at the end of the motion. The potential energy is then available for the next opening/closing event. The motor initiates motion, replaces friction and vibration losses, and terminates motion. However, the motor supplies minimal energy as the valve opens and closes, and vice-versa, naturally due to combined effects of system inertia and the nonlinear spring. In addition to valve control, the apparatus may be applied to fuel injectors, or any reciprocating linear or rotary mechanism where electronic control is used.
Abstract:
In a motor vehicle valve train adjustment device comprising at least one camshaft with at least two axially displaceable cam elements wherein at least one cam element has a cam track with a valve lift and a cam track with zero valve lift for a deactivation of at least one cylinder, and at least one other cam element of the at least two axially displaceable cam elements has a cam track with a first valve lift and a cam track with a second valve lift by which a cylinder which remains fueled during a partial cylinder deactivation is adapted to the at least one cylinder deactivation by special valve lift characteristics.
Abstract:
Methods are provided for improved control of valve activation/deactivation mechanisms. One example method comprises, adjusting an electromechanical actuator to actuate cylinder valve deactivation/activation mechanisms. The actuator is operated at multiple levels based on engine operating conditions.
Abstract:
A continuous variable valve lifter having a cylinder air volume difference adjuster includes a camshaft having an input cam, an eccentric control shaft disposed parallel to the camshaft, and a control link rotatable around the eccentric control shaft. An output cam is provided to open and close a valve actuator for opening/closing, and a connection link is rotatably connected to the control link, and driving the output cam by the rotation of the input cam. A cam cap is disposed where the camshaft and the eccentric control shaft are mounted.The cylinder air volume difference adjuster includes a hinge pin serving as the rotational center of the output cam disposed parallel to the camshaft, a pin holder where the hinge pin is mounted, and an adjusting bolt for selectively shifting the position of the pin holder.
Abstract:
A camshaft may have an inner shaft and an outer shaft, each rotatable relative to the other. An adjusting device may include a first phase adjuster and a second phase adjuster. The outer shaft may be mounted in a stationary counter bearing adjacent to the adjusting device and the adjusting device may have a first phase adjuster and a second phase adjuster. The counter bearing may be designed as a slide bearing and oil supply to the phase adjusters may take place via the slide bearing. The slide bearing may have a first, second and third oil channel. The first oil channel may act on the first phase adjuster with corresponding oil flows, the second oil channel may act on the second phase adjuster with a first oil flow, and the third oil channel may act on the second phase adjuster with a second oil flow.