Abstract:
An electron-emitting device comprises a pair of electrodes and an electroconductive film arranged between the electrodes and including an electron-emitting region carrying a graphite film. The graphite film shows, in a Raman spectroscopic analysis using a laser light source with a wavelength of 514.5 nm and a spot diameter of 1 μm, peaks of scattered light, of which 1) a peak (P2) located in the vicinity of 1,580 cm−1 is greater than a peak (P1) located in the vicinity of 1,335 cm−1 or 2) the half-width of a peak (P1) located in the vicinity of 1,335 cm−1 is not greater than 150 cm−1.
Abstract:
In an electron source manufacturing apparatus, the quantity of heat generated from an electron source substrate is measured. A temperature of a support member for the electron source substrate is controlled based on the measured quantity of heat generated. A variation in performances of electron source substrates is suppressed, which increase their life.
Abstract:
An image display apparatus includes a display panel having an electron source, an acceleration electrode for accelerating electrons emitted from the electron source and phosphors for emitting light by collision of electrons accelerated by the acceleration electrode, and a detector for detecting a current flowing through the acceleration electrode during a non-display period. In addition, a controller is provided to decrease the luminance level, stop display driving or transmit warning information when the current detected becomes more than a predetermined value.
Abstract:
In case of forming films in plural positions with an ink jet head having plural nozzles, to provide a method of efficiently correcting an aberration in the liquid droplet applying position resulting for example from a distortion of a substrate, thereby producing an electron source with a high production yield. Positions of device electrodes 2, 3 on the electron source substrate 1 are detected by fetching in advance a surface image of the substrate 1, then a position of an electroconductive film 4 is calculated as a liquid droplet applying position, and an inclination angle θ of the ink jet head 11 is so regulated that a pitch of the nozzles 12 matches a pitch d of the obtained liquid droplet applying positions.
Abstract:
An electron emission device is provided which has sufficient on/off characteristics and is capable of efficiently emitting electrons with a low voltage. An electron emission device includes a substrate, a cathode electrode, a gate electrode, which are arranged on the substrate, an insulation layer covering the surface of the cathode electrode, and a dipole layer formed by terminating the surface of the insulation layer with hydrogen.
Abstract:
A method for forming patterned insulating elements on a substrate includes a plurality of exposure steps of exposing a photosensitive paste provided on the substrate through at least one mask having a predetermined pattern; a developing step of developing the exposed photosensitive paste to form a precursor pattern; and a firing step of firing the precursor pattern to form the patterned insulating elements. This method is applied to a method for forming an electron source and a method for forming an image display device including the electron source.
Abstract:
An electron-emitting element includes an electric field applying portion comprising of a dielectric formed on a substrate, a first electrode formed on one surface of the electric field applying portion, a second electrode being formed on the surface of the electric filed applying portion, and a slit formed in cooperation with the first electrode.
Abstract:
A method for manufacturing an electron emission element comprising, between its electrodes, a conductive film having an electron emission section. The method comprising the steps of forming a gap in the conductive film located between the electrodes, and applying a voltage between the electrodes in an atmosphere that has an aromatic compound with a polarity or a polar group and in which the partial pressure ratio of water to the aromatic compound is 100 or less.
Abstract:
An electron emission device is provided which has sufficient on/off characteristics and is capable of efficiently emitting electrons with a low voltage. An electron emission device includes a substrate, a cathode electrode, a gate electrode, which are arranged on the substrate, an insulation layer covering the surface of the cathode electrode, and a dipole layer formed by terminating the surface of the insulation layer with hydrogen.
Abstract:
A method for producing a pattern of an electroconductive member, comprises: a step of forming on a substrate surface a resin film containing acid group; a step of incorporating into the resin film a liquid containing a metal complex salt and having a pH value of 5 to 7; and a step of baking the resin film to form the electroconductive member from a metal component incorporated into the resin film, thereby improving uniformity and speed of an adsorbing of the metal component into the resin, and providing uniform characteristics of the electroconductive pattern.