Abstract:
In accordance with aspects of the present disclosure, electrosurgical systems are provided generally including at least one energy-delivery device for delivering energy to tissue when inserted or embedded within tissue. The energy-delivery device can be a tissue ablation device, such as an ablation probe, needle, etc. for ablating tissue as commonly known in the art. The electrosurgical systems include at least one structure and/or operational characteristic for enhancing ultrasonic visibility of the energy-delivery devices within tissue during ultrasonography.
Abstract:
A device for directing energy to a target volume of tissue includes an inner conductor having a length and an outer conductor coaxially surrounding the inner conductor along the length. The outer conductor has a proximal portion and a distal portion. The distal portion of the outer conductor is provided with a number of apertures N defined therein for radiating energy, where N is an integer greater than 1, each aperture having a size and extending at an angle relative to a longitudinal axis of the outer conductor. At least one of the size and the angle of each aperture is varied in relation to the other apertures N−1 such that the energy radiated along the distal portion is substantially uniform.
Abstract:
A system for monitoring ablation size is provided and includes a power source including a microprocessor for executing at least one control algorithm. A microwave antenna is configured to deliver microwave energy from the power source to tissue to form an ablation zone. An ablation zone control module is in operative communication with memory associated with the power source. The memory includes one or more data look-up tables including one or more electrical parameter associated with the microwave antenna. The one or more electrical parameters corresponding to an ablation zone having a radius. The one or more electrical parameters include a threshold value, wherein when the threshold value is met the power source is adjusted to form an ablation zone of suitable proportion.
Abstract:
Microwave ablation applicators and methods for manufacturing the microwave ablation applicators are disclosed. A microwave ablation applicator includes a feed-line segment, a step-down segment, and a radiator base segment. The feed-line segment includes a first inner conductor, a first dielectric disposed on the first inner conductor, and a first outer conductor disposed on the first dielectric. The step-down segment includes a second inner conductor, a second dielectric disposed on the second inner conductor, and a second outer conductor disposed on the second dielectric. The radiator base segment includes a third inner conductor disposed on the third inner conductor, a third outer conductor disposed on the proximal end of the third dielectric so as to form a feed gap at a distal end of the radiator base segment, a balun dielectric disposed on the third outer conductor, and a balun outer conductor disposed on the balun dielectric.
Abstract:
A microwave ablation system configured for use in luminal network is provided. The microwave ablation system includes a microwave energy source and a tool for treating tissue. An extended working channel is configured to provide passage for the tool. A locatable guide, translatable through the extended working channel, is configured to navigate the extended working channel adjacent a target.
Abstract:
A method for treating lung tissue of a patient is provided. A pathway to a point of interest in a lung of a patient is generated. An extended working channel is advanced transorally into the lung and along the pathway to the point of interest. The extended working channel is positioned in a substantially fixed orientation at the point interest. A tool is advanced though the extended working channel to the point of interest. The lung tissue is treated at the point of interest.
Abstract:
A microwave ablation system configured for use in luminal network is provided. The microwave ablation system includes a microwave energy source and a tool for treating tissue. An extended working channel is configured to provide passage for the tool. A locatable guide, translatable through the extended working channel, is configured to navigate the extended working channel adjacent a target.
Abstract:
A microwave ablation system configured for use in luminal network is provided. The microwave ablation system includes a microwave energy source. A tool for treating tissue is provided with the microwave ablation system. An extended working channel is configured to provide passage for the tool. A locatable guide catheter is positionable through the extended working channel and configured to navigate the extended working channel adjacent the target tissue. The microwave ablation system includes a navigation system that is configured for guiding the tool, extended working channel or the locatable guide through a luminal network following a predetermined determined pathway to the target tissue. One or more imaging modalities may be utilized for confirming placement of the tool within target tissue.
Abstract:
The modular microwave ablation system of the present disclosure includes a microwave instrument, a microwave generator, and one or more auxiliary modules that include circuitry for performing functions related to the operation of the microwave generator. The one or more auxiliary modules are removably connected to the microwave generator. The microwave generator includes a microwave signal generator that generates a microwave signal; a microwave generator controller in communication with the microwave signal generator; one or more terminals that connect to the one or more auxiliary modules, respectively; and a power supply and/or a power distribution module coupled to the microwave signal generator, the microwave generator controller, and the one or more terminals. The one or more terminals provide (1) power from the power supply and/or power distribution module to the one or more respective auxiliary modules and (2) communication signals to and from the one or more respective auxiliary modules.
Abstract:
A system for ultrasound interrogation of a lung including a memory, an electromagnetic (EM) board, an extended working channel (EWC), an EM sensor, a US transducer, and a processor. The memory stores a three dimensional (3D) model and pathway plan for navigating a luminal network. The EM board generates an EM field. The EWC is configured to navigate the luminal network toward a target following the pathway plan. The EM sensor extends distally from a distal end of the EWC and is configured to sense the EM field. The US transducer extends distally from a distal end of the EWC, generates US waves, and receives US waves reflected from the luminal network. The processor processes the sensed EM field to synchronize a location of the EM sensor in the 3D model, to process the reflected US waves to generate images, or to integrate the generated images with the 3D model.