LEVOGLUCOSAN-BASED FLAME RETARDANT COMPOUNDS
    173.
    发明申请

    公开(公告)号:US20190136136A1

    公开(公告)日:2019-05-09

    申请号:US15806423

    申请日:2017-11-08

    Abstract: A levoglucosan-based flame retardant compound, a process for forming a flame retardant polymer, and an article of manufacture comprising a material that contains a levoglucosan-based flame retardant polymer are disclosed. The levoglucosan-based flame retardant compound has phosphorus-based flame retardant functional groups. The process for forming the flame retardant polymer includes providing a phosphorus-based flame retardant molecule, providing levoglucosan, chemically reacting the phosphorus-based flame retardant molecule and the levoglucosan derivative to form a levoglucosan-based flame retardant compound, and incorporating the levoglucosan-based flame retardant compound into a polymer to form the levoglucosan-based flame retardant polymer.

    Thermally cross-linkable photo-hydrolyzable inkjet printable polymers for microfluidic channels

    公开(公告)号:US10272663B2

    公开(公告)日:2019-04-30

    申请号:US15412210

    申请日:2017-01-23

    Abstract: Thermally cross-linkable photo-hydrolyzable inkjet printable polymers are used to print microfluidic channels layer-by-layer on a substrate. In one embodiment, for each layer, an inkjet head deposits droplets of a mixture of hydrophobic polymer and cross-linking agent in a pattern lying outside a two-dimensional layout of the channels, and another inkjet head deposits droplets of a mixture of poly(tetrahydropyranyl methacrylate) PTHPMA (or another hydrophobic polymer which hydrolyzes to form a hydrophilic material), cross-linking agent, and a photoacid generator (PAG) in a pattern lying inside the two-dimensional layout of the channels. After all layers are printed, flood exposure of the entire substrate to UV radiation releases acid from the PAG which hydrolyzes PTHPMA to form hydrophilic poly(methacrylic acid) PMAA, thereby rendering the PTHPMA regions hydrophilic. The layers of these now-hydrophilic patterned regions together define the microfluidic channels. The cross-linking agent (e.g., triallyl isocyanurate TAIC) forms covalent cross-links between the two polymer phases.

    Flame-retardant vanillin-derived monomers

    公开(公告)号:US10266772B2

    公开(公告)日:2019-04-23

    申请号:US15584838

    申请日:2017-05-02

    Abstract: A flame-retardant vanillin-derived monomer, a process for forming a flame-retardant polymer, and an article of manufacture comprising a material that contains flame-retardant vanillin-derived monomer are disclosed. The flame-retardant vanillin-derived monomer can be synthesized from vanillin obtained from a bio-based source, and can have at least one phosphoryl or phosphonyl moiety with phenyl, allyl, epoxide, or propylene carbonate substituents. The process for forming the flame-retardant polymer can include reacting a vanillin derivative and a flame-retardant phosphorus-based molecule to form the flame-retardant vanillin-derived monomer, and then polymerizing the flame-retardant vanillin-derived monomer. The material in the article of manufacture can be flame-retardant, and contain the flame-retardant vanillin-derived monomer. Examples of materials that can be in the article of manufacture can include resins, plastics, adhesives, polymers, etc.

    Bondable flame-retardant vanillin-derived molecules

    公开(公告)号:US10266771B2

    公开(公告)日:2019-04-23

    申请号:US15584753

    申请日:2017-05-02

    Abstract: A flame-retardant vanillin-derived molecule, a process for forming a flame-retardant resin, and an article of manufacture comprising a material that contains the flame-retardant vanillin-derived molecule are disclosed. The flame-retardant vanillin-derived molecule can be synthesized from vanillin obtained from a bio-based source, and can have at least one phosphoryl or phosphonyl moiety with phenyl, allyl, epoxide, propylene carbonate, or thioether substituents. The process for forming the flame-retardant resin can include reacting a vanillin derivative and a flame-retardant phosphorus-based molecule to form the flame-retardant vanillin-derived molecule, and binding the flame-retardant vanillin-derived molecule to a resin. The flame-retardant vanillin-derived molecules can also be bound to polymers. The material in the article of manufacture can be flame-retardant, and contain the flame-retardant vanillin-derived molecules. Examples of materials that can be in the article of manufacture can include resins, plastics, adhesives, polymers, etc.

Patent Agency Ranking