Abstract:
An digital image capture and processing system supporting employing an adaptive control process involving the real-time analysis of the exposure quality of captured digital images and the reconfiguration of system control parameters (SCPs) based on the results of such exposure quality analysis. By virtue of the present invention, the system enables the reliable reading of code symbols graphically represented in digital images, under demanding point-of-sale lighting conditions and other challenging environments.
Abstract:
An imaging device including at least one imaging array and image formation optics that provide a field of view corresponding to the imaging array. At least one illumination module (which includes at least one source of coherent illumination) produces planar light illumination that substantially overlaps the field of view corresponding to the imaging array. Illumination control circuitry modulates the power level of illumination produced by the source of coherent illumination during each photo-integration time period of the imaging array to thereby reduce speckle noise in images captured by the imaging array. The illumination control circuitry preferably modulates the power level of illumination by controlling the number and/or duration of time periods corresponding to different power levels of illumination produced by the source of coherent illumination during each photo-integration time period of the imaging array. Moreover, the illumination control circuitry preferably controls number and/or duration of the time periods such that substantially constant energy is produced by the source of coherent illumination over the time periods (thereby enabling the different speckle patterns produced over the timer periods to optimally cancel each other out).
Abstract:
Disclosed is a method of and apparatus for dynamically and adaptively controlling system control parameters (SCPs) in a multi-mode image capture and processing system, wherein (i) automated real-time exposure quality analysis of captured digital images is automatically performed in a user-transparent manner, and (ii) system control parameters (e.g. illumination and exposure control parameters) are automated reconfigured based on the results of such exposure quality analysis, so as to achieve improved system functionality and/or performance in diverse environments.
Abstract:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type scanning applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
Abstract:
A method of generating a complex laser scanning pattern from a bioptical laser scanning system for providing 360° of omnidirectional bar code symbol scanning coverage at a point of sale station that employs a plurality of laser scanning stations about two independently controlled rotating polygonal mirrors. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of laser scanning planes, including a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder type bar code symbols) that are oriented substantially horizontal with respect to the bottom-scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom-scanning window.
Abstract:
A modular omnidirectional laser-based bar code symbol scanning system having at least one scan module insert that is removably disposed (e.g., removably installed) within a system housing (or portion thereof) through a service port (e.g., opening) in the system housing (or portion thereof). The scan module insert is a self-contained unit including at least the following components (in addition to mechanical support structures for such components): at least one laser diode, a rotating scanning element, an electric motor that rotates the rotating scanning element, one or more photodetectors, and analog signal processing circuitry that conditions (e.g., amplifies and/or filters out unwanted noise in) the electrical signal produced by the one or more photodetectors. The scan module insert can optionally include additional components including one or more light collecting optical elements, one or more beam folding mirrors, circuitry for detecting and decoding bar code symbols scanned by the system, etc. The modular architecture of omnidirectional laser scanner of the present invention enables quick access to the scan module insert for efficient repair/reconfiguration/configuration of the optical components, electro-optical, electromechanical components and/or electrical components integral thereto.
Abstract:
A bioptical laser scanning system employing a plurality of laser scanning stations about a two independently controlled rotating polygonal mirrors. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of laser scanning planes, including a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder type bar code symbols) that are oriented substantially horizontal with respect to the bottom-scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom-scanning window.
Abstract:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. Advanced high-resolution wavefront control methods and devices are disclosed for use with the PLIIM-based systems in order to reduce the power of speckle-noise patterns observed at the image detections thereof. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type imaging applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
Abstract:
A bioptical laser scanning system employing a plurality of laser scanning stations about a two independently controlled rotating polygonal mirrors. The system has an ultra-compact construction, ideally suited for space-constrained retail scanning environments, and generates a 3-D omnidirectional laser scanning pattern between the bottom and side-scanning windows during system operation. The laser scanning pattern of the present invention comprises a complex of quasi-orthogonal laser scanning planes, including a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e. ladder type bar code symbols) that are oriented substantially horizontal with respect to the bottom-scanning window, and a plurality of substantially-horizontal laser scanning planes for reading bar code symbols having bar code elements (i.e. picket-fence type bar code symbols) that are oriented substantially vertical with respect to the bottom-scanning window.