Abstract:
A blade includes an airfoil having pressure and suction side walls extending in a spanwise direction from a blade root to a blade tip and a hard phaseless metallic coating located at the blade tip. An assembly includes a casing having an inner diameter surface, an abradable coating located on a portion of the inner diameter surface, a blade having a blade tip configured to rotate within the casing where the blade tip and the inner diameter surface of the casing form a seal, and a hard phaseless metallic coating located on the blade tip. A method of making a blade includes forming a blade having a tip and depositing a hard phaseless metallic coating on the blade tip.
Abstract:
A compressor airfoil has a leading edge, a trailing edge, and a radially outboard edge connecting the leading edge and the trailing edge. The leading edge is formed according to a leading edge tip profile and the trailing edge is formed according to a trailing edge tip profile. The leading edge tip profile and/or trailing edge tip profile has a chamfer and/or a radius. In this manner, contact stress experienced by the compressor airfoil such as upon contact with a surrounding abradable seal are ameliorated. The leading edge tip profile and/or trailing edge tip profile are coated with an abrasive coating such as to enhance fitting of the abradable seal to the path of the compressor airfoil upon such contact.
Abstract:
An abrasive blade tip coating comprising a blade tip having a top surface. A plurality of first grit particles are dispersed over the top surface of the blade tip. A plurality of second grit particles are closely packed between each of the plurality of first grit particles. The second grit particles having a nominal size smaller than the first grit particles. A matrix material is bonded to the top surface. The matrix material envelops the second grit particles. The matrix material is also bonded to and partially surrounds the first grit particles, wherein the first grit particles extend above the matrix material and the second grit particles relative to the top surface.
Abstract:
A process for manufacturing a preformed sheet having geometric surface features for a geometrically segmented abradable ceramic thermal barrier coating on a turbine engine component, the process comprising the steps of providing a preformed sheet material. The process includes forming a partially of geometric surface features in the sheet material. The process includes joining the sheet material to a substrate of the turbine engine component. The process includes disposing a thermally insulating topcoat over the geometric surface features and forming segmented portions that are separated by faults extending through the thermally insulating topcoat from the geometric surface features.
Abstract:
An abradable coating for application to a gas turbine engine part is formed from a titanium aluminide alloy, a filler material, and porosity. The coating may be applied to a part such as a casing made from a titanium alloy.
Abstract:
A vibration resistant fan guide vane for a gas turbine engine is provided. The fan guide vane comprises a vibration damping component made of a MAXMET composite. The damping component may be a cover that covers some or all of the fan guide vane body. Alternatively, portions of the fan guide vane body or the entire vane body may be made from MAXMET composites. The disclosure makes use of the ultrahigh, fully reversible, non-linear elastic hysteresis behavior that MAXMET composites exhibit during cyclic elastic deformation in order to damp vibration.
Abstract:
A blade includes a blade body extending from a blade root to an opposed blade tip surface along a longitudinal axis. The blade body defines a pressure side and a suction side. The blade body includes a cutting edge defined where the tip surface of the blade body meets the pressure side of the blade body. The cutting edge is configured to abrade a seal section of an engine case. A method for manufacturing a blade includes forming an airfoil with a root and an opposed tip surface along a longitudinal axis, wherein the airfoil defines a pressure side and a suction side. The method also includes forming a cutting edge where the tip surface of the airfoil meets the pressure side of the airfoil.
Abstract:
A method is provided for manufacturing a blade. The blade comprises an airfoil (100) having: a root end and a tip (106); a metallic substrate (102) along at least a portion of the airfoil; and an anodized layer (154). The method comprises roughening the tip to form protrusions (158′; 402′) and anodizing to form the anodized layer so that the protrusions form an abrasive (156; 400).
Abstract:
One aspect of the disclosure involves a rub material comprising a polymeric matrix and polymer micro-balloon filler in the matrix. In one or more embodiments of any of the foregoing embodiments, the matrix comprises a silicone. In one or more embodiments of any of the foregoing embodiments, the rub material is at least I.0 mm thick. In one or more embodiments of any of the foregoing embodiments, the silicone is selected from the group consisting of dimethyl- and fluoro-silicone rubbers and their copolymers. In one or more embodiments of any of the foregoing embodiments, the micro-balloons at least locally have a concentration of 5-50% by volume.
Abstract:
A method is disclosed for manufacturing a blade tip coating. The blade tip coating (152) comprising an abrasive (156) and a matrix (154). The method comprises forming a mixture comprising the abrasive, a precursor of the matrix, and an additional particulate (158). The mixture is pressed, the additional particulate acting as a stop to limit thickness reduction of the mixture.