Abstract:
An operator system for moving a barrier between limit positions, comprising an operator motor assembly mounted proximate to the barrier, at least a portion of said operator motor assembly movable depending upon an operating condition thereof; a counterbalance system adapted to be connected to the barrier, said counterbalance system coupled to said operator motor assembly to move the barrier; and an integral cable storage drum and transfer assembly connecting said operator motor assembly to said counterbalance system.
Abstract:
A power closure actuator especially suitable for use in powering various automotive closure devices. The actuator includes a brushless pancake electric motor having an output shaft; a sun gear on the output shaft; a plurality of compound planet gears each having a large diameter lower portion meshingly engaging the sun gear and a small diameter upper portion; a ring gear surrounding and meshingly engaging the small diameter upper portions of the planet gears, and a cable drum splined to the ring gear. A mounting plate positioned in overlying confronting relation to the flat upper face of the motor mounts a plurality of planet shafts extending upwardly from the mounting plate in circumferentially spaced relation to the motor output shaft with a compound planet gear journaled on each planet shaft.
Abstract:
A power closing assembly operates a closure panel hingedly secured to a motor vehicle. The power closing assembly includes an actuator mounted to the motor vehicle, a movable striker also mounted to the motor vehicle to receive the closure panel's latch, and a rotary power cable connecting therebetween. The actuator has a closure cable on a spooling drum extending to the closure panel for closing from an open position when the actuator operates. The movable striker moves between a nominal inboard position and an outboard position. A rotary power cable connects between a provided output on the actuator and an input on the striker so that the striker's movement is powered and synchronized by the actuator. With the closure panel open, the actuator begins a closing cycle by driving in a direction to spool in the closure cable extending to the closure panel. The actuator's direction, using the rotary power cable, simultaneously causes the striker to move outboard. When the closure panel is pulled completely closed, the striker has also moved to its outboard position whereupon the closure panel's latch readily receives and engages the striker. Upon engagement, the actuator reverses its drive direction. This reverse direction causes both the actuator to reset with respect to its closure cable spooling drum and the rotary power cable to turn in the other direction causing the striker to return to its inboard position and fully close the closure panel against its seal load.
Abstract:
A drive device for opening and closing a slide body includes: a drum mating with a secondary cable end portion of a first cable and a secondary cable end portion of a second cable. The drum includes; a main drum mating with the secondary cable end portion of one of the first cable and the second cable, and a sub-drum mating with the secondary cable end portion of the other of the first cable and the second cable. An inner gear is formed on an inner face of one of the main drum and the sub-drum. An outer gear is formed on an outer face of the other of the main drum and the sub-drum. The inner gear meshing with the outer gear for adjusting a cable length of the first cable and a cable length of the second cable.
Abstract:
A device for a window lifter of a vehicle door includes a cable winding drum disposed inside a housing of a casing and a seal attached to the casing. The seal includes a stop portion that prevents translational movement of the drum along its rotational axis while still allowing the drum to rotate freely about the axis. The inventive device allows the drum to be held in the housing before the casing is mounted on a dividing panel without requiring auxiliary parts to hold the drum in place and without compromising the seal when the casing is fastened to or removed from the dividing panel.
Abstract:
A cable drive unit for opening and closing a sliding door on a vehicle (not shown) has a cup-shaped front drum having a helical front cable groove and a rear cup-shaped drum having a helical rear cable groove. The front drum is rotated about a longitudinal axis in a first direction to open the sliding door. The rear drum is partially nested in the front drum and rotated about the longitudinal axis in an opposite direction to close the sliding door. The front drum and the rear drum are drivingly connected to each other via a tension spring that biases the front drum and the rear drum in opposite directions when in tension. The front and rear drums are rotated by a concentric clutch that is nested in the rear drum. The clutch includes a drive member that is drivingly connected to the front drum via a first lost motion connection and drivingly connected to the rear drum via a second lost motion connection. The first drum has an arcuate slot forming part of the first lost motion connection, the rear drum has an arcuate slot forming part of the second lost motion connection, and the drive member has a tab that projects through both arcuate slots to form part of the first lost motion connection and part of the second lost motion connection.
Abstract:
A control method of a powered sliding device for a vehicle sliding door, wherein when an operating switch for starting a powered sliding device is pressed to open the door, and if the vehicle speed is about 3 km/h or less and the foot brake or the parking brake is operated, the decelerating state of the vehicle just before is confirmed, and when the decelerating state does not correspond to the quick braking, the powered sliding device is started.
Abstract:
A drive unit is arranged in a side of one side surface of a panel constituting a part of a door, and a drum case of a driven unit is fixed to a side of another side surface of the panel. The side of another side surface of the panel is provided with a plurality of engagement portions, which are engaged respectively with a plurality of to be engaged portions provided in the drum case, thereby positioning the drum case.
Abstract:
A drive assembly moves a vehicle closure panel from an open to a closed condition. The drive assembly has a housing and a motor mounted on the housing. A drum and gear assembly is rotatably mounted on the housing. The drum and gear assembly has a drum having a helical groove, a gear in driving engagement with the motor, and a spring biasing the drum in a winding direction relative to the gear. The drum and gear have a lost motion connection therebetween. A cable has an end connected to the closure panel and an opposite end connected to the drum about the helical groove in the winding direction. The drum rotates in the winding direction relative to the stationary gear as the closure panel is manually moved from the open to the closed condition with the spring maintaining a cable tension. The drum and gear rotate together in the winding direction upon energizing the motor effecting powered movement of the closure panel to the closed condition. The motor is afterwards energized in an opposite direction counter-rotating the gear relative to the drum back to a start position.
Abstract:
A control method wherein sliding of a sliding door by a powered sliding device is started after sounding an annunciation buzzer when an operating switch is operated, but when a remote control transmitter integrally having an ignition key is operated, the sliding of the sliding door by the powered sliding device is started without operating the annunciation buzzer.