Abstract:
A combustion system includes a combustion zone comprising a burner for converting a fuel, under fuel rich conditions, to a flue gas; an intermediate staged air zone downstream from the combustion zone for supplying intermediate staged air to the flue gas and producing fuel lean conditions; a reburn zone downstream from the intermediate staged air zone for receiving the flue gas; and an inlet downstream from the combustion zone for supplying a mixture of air and a reduction reagent to the flue gas, wherein the reduction reagent is configured to reduce an amount of a pollutant species in the flue gas.
Abstract:
An after-air nozzle capable of reducing NOx and CO and a boiler equipped with such a nozzle are provided The after-air nozzle has a vena contracta such that an outside diameter of a flow passage diminishes towards the air-jetting port which supplies air to a boiler, and a changing apparatus changes a flow passage cross-sectional area of the vena contracta. A method of use of such an after-air nozzle and a boiler so equipped is also provided.
Abstract:
A method for controlling the combustion air supply in a steam generator that is fueled with fossil fuels, the combustion air being supplied gradually in different combustion zones. The combustion air supply is controlled, depending on the NOx and/or CO content in the flue gas, in such a manner that first the air supply is varied between the different combustion zones with approximately constant air volumes. An external control of the overall air volume overrides this type of control.
Abstract:
A method of operating a pyrolysis heater for reduced emissions of NOx and carbon monoxide. One or more wall burners, typically premix burners, are operated with more excess oxidant gas than one or more of the floor or hearth burners, which are typically non-premix burners. The invention takes advantage of different NOx emissions characteristics from different types of burners.
Abstract:
A combustion system equipped with one or more carbonaceous fuel burning combustors (e.g., slagging Cyclone combustor) and adapted to minimize nitrogen oxide (NOx) formation during staged combustion operation by selective introduction of oxygen through at least one of the combustors to create a hot sub-stoichiometric combustion zone by reducing the diluent effect of nitrogen and other inert gases present in the oxidizer/air. A method of operating the combustion system of the invention with reduced NOx emissions is also disclosed.
Abstract:
A method for reducing an amount of mercury in flue gas is provided. The method includes injecting a quantity of coal having a fineness of less than 70%
Abstract:
A combustion apparatus for combusting including: a boiler defining an enclosed flue gas path having a combustion zone and a burnout zone, wherein flue gas is formed in the combustion zone and the combustion flue gas comprising nitrogen oxides; a fuel injector aligned with and introducing fuel into the combustion zone and a combustion air injector aligned with and introducing air into the combustion zone; an overfire air system adjacent the burnout zone comprising an overfire air port adjacent the burnout zone and through which overfire air flows into the burnout zone, and a nitrogen reagent injector having an outlet aligned with the overfire air system and injecting nitrogen reagent gas or small droplets into said overfire air, wherein said small droplets have an average diameter of no greater than 50 microns.
Abstract:
A method of decreasing a concentration of nitrogen oxides in a combustion gas flowing through a vessel including: generating a flue gas in a combustion zone of the vessel, the flue gas containing nitrogen oxides and carbon monoxide; providing overfire air into a burnout zone of the vessel from a first injector of overfire air to oxidize at least some of the carbon monoxide in the flue gas; injecting a selective reducing agent concurrent with overfire air at a level in the burnout zone downstream of the first injector of overfire air and downstream of the oxidization of the carbon monoxide, and reacting the selective reducing agent with the flue gas to reduce the nitrogen oxides.
Abstract:
A staged-coal injection procedure for coal-fired boilers used in power generation. The procedure includes the steps of combusting a first type of coal in a first zone of a furnace; and combusting a second type of coal in a second zone of the furnace. The second zone is at a position separate from the first zone.
Abstract:
A method for reducing nitrogen oxides of a recovery boiler, and a recovery boiler, where the furnace of the recovery boiler is supplied with primary air from primary air nozzles, black liquor from liquor nozzles, secondary air from secondary air nozzles above the primary air nozzles but still below the liquor nozzles, tertiary air from tertiary air nozzles above the liquor nozzles, and quaternary air from quaternary air nozzles above the tertiary air nozzles. Black liquor is supplied to the furnace from first liquor nozzles and second liquor nozzles, which liquor nozzles are arranged substantially on the same level with respect to the height of the furnace, and the droplet size of liquor fed from the second liquor nozzles is substantially smaller than the droplet size of liquor fed from the first liquor nozzles.