Abstract:
Provided is a method of canceling a vocal signal, wherein the method includes obtaining a difference signal between two audio signals; and smoothing the frequency of the difference signal. Also provided is a device for canceling a vocal signal, the device including a subtracter which obtains a difference signal between two audio signals; and a frequency smoothing unit which smoothes a frequency of the difference signal.
Abstract:
A multifunctional handler system for electrical testing of semiconductor devices is provided. The multifunctional handler system comprises: (1) a semiconductor device processing section comprising a loading unit including a buffer, a sorting unit including a separate marking machine, and a unloading unit; (2) a semiconductor device testing section, separate from the semiconductor device processing section, comprises a test chamber, the test chamber is separated into two or more test spaces, and the test spaces of the test chamber include a second chamber positioned at a lower position, a first chamber positioned above the second chamber, and pipelines for connecting the first and second chambers to each other; and (3) a host computer which is independently connected to the semiconductor device processing section and the semiconductor device testing section and controls tray information, test results, marking information, and test program information.
Abstract:
Disclosed herein is a method of manufacturing a metallic bipolar plate for fuel cells, which can maintain good corrosion resistance and contact resistance without any side effect not only initially but also after a predetermined period of time even in an environment of severe vibration as in vehicles while allowing a continuous process to provide high productivity. The method includes (a) preparing a metal plate as a matrix of the metallic bipolar plate; (b) pickling a surface of the metal plate; (c) coating a composition comprising a binder resin, carbon particles, and a solvent on the pickled surface of the metal plate; and (d) drying the surface of the metal plate, on which the composition is coated, at a temperature less than a thermal decomposition temperature of the binder resin and greater than or equal to a boiling point of the solvent to form a coating layer on the surface of the metal plate, the coating layer having the carbon particles dispersed in a matrix of the binder resin, wherein these processes are performed as a continuous process.
Abstract:
A multi-panel display device and a method of driving the same, which can simplify a driving circuit for driving multiple flat panel display devices, thereby decreasing the fabrication cost and reducing noise., are disclosed. In the multi-panel display device configured of an alignment of multiple flat panel display devices for representing a single image, the multi-panel display device includes at least one image display unit configured of the multiple flat panel display devices aligned in an n×m formation (wherein m and n are integers being equal to or different from one another, and wherein m≦0 and n≦0), and at least one data converter being configured to correspond to each image display unit, dividing externally inputted video data in accordance with offset information inputted by a user, and converting the size of the divided video data, thereby providing the converted divided video data to each flat panel display device.
Abstract:
A projection lens unit and a thin projector using the same are disclosed. The projection lens unit includes a plurality of lens sets for emitting light carrying an image, and a reflector arranged between adjacent ones of the lens sets or at a downstream end of the lens sets, and adapted to change a direction of light incident on the reflector.
Abstract:
A circuit board includes a plurality of differential signal line pairs, and a plurality of electromagnetic bandgap (EBG) patterns, each configured to be disposed to overlap the plurality of differential signal line pairs, wherein the EBG patterns are electrically insulated from the differential signal line pairs.
Abstract:
A semiconductor device test handler for maintaining stable temperature in a test environment may include a loading unit that loads a plurality of semiconductor devices mounted on a test tray; a soak chamber configured to receive the test tray from the loading unit and to age the semiconductor devices at an aging temperature; and a test chamber configured to receive and test the aged semiconductor devices. The test chamber may include: a test board; a first chamber; a second chamber; one or more pipelines connected to the first and second chambers that allow a temperature-control medium to flow between the first and second chambers; a de-soak chamber that further ages the tested semiconductor devices so that the tested semiconductor devices substantially return to ambient temperature; and a sorting and unloading unit that sorts the tested semiconductor devices according to results of the test and that unloads the sorted semiconductor devices.
Abstract:
A thin projector is disclosed. The thin projector includes a housing having an upright panel shape, an illumination unit arranged in the interior of the housing, the illumination unit generating light and emitting the generated light, a micro device arranged in the interior of the housing, the micro device receiving the light from the illumination unit and producing an image using the received light, and a projection lens unit arranged in the interior of the housing, the projection lens unit including an emission unit adapted to externally emit the image produced by the micro device and arranged to be externally exposed through a front side of the housing.
Abstract:
Semiconductor device with a controllable decoupling capacitor includes a decoupling capacitor connected between a power voltage terminal and a ground terminal and a switching unit configured to enable/disable the decoupling capacitor in response to a control signal. According to another aspect, a semiconductor device with a controllable decoupling capacitor includes multiple circuits, decoupling capacitors being connected in parallel to each of the circuits and switching units being configured to enable/disable the decoupling capacitors in response to control signals.