Abstract:
Apparatuses and methods including conductive vias of a printed circuit board are described. An example apparatus includes a first layer including a first conductive plate; a component on the first layer, a second layer including a second conductive plate that may be coupled to an external power source; a third layer between the first layer and the second layer, the third layer including a third conductive plate; a first via coupling the first conductive plate to the second conductive plate; and a second via coupled to the first conductive plate. The first conductive plate includes a first portion coupled to the first via and the first conductive plate further includes a second portion coupled to the second via between the first portion and the component. The second via is coupled to either the second conductive plate or the third conductive plate.
Abstract:
An objective of the present invention is to provide a printed board being capable of suppressing EMI emissions from power supply wirings. To accomplish the objective, a printed board of the present invention includes a plurality of ground layers disposed in a printed board, a power supply layer put between the plurality of the ground layers, and through holes disposed along at least periphery of the printed board and connecting the plurality of the ground layers, wherein the through holes are disposed at intervals according to a wavelength corresponding to a maximum frequency of electromagnetic waves to be suppressed.Further, a printed board of the present invention includes a power supply layer disposed in a printed board and put between ground layers above and below the power supply layers, and a plurality of through holes connecting the ground layers above and below the power supply layers, wherein the plurality of the through holes are disposed at and near the power supply layer and are spaced apart at intervals according to a wavelength corresponding to a maximum frequency of electromagnetic waves to be suppressed.
Abstract:
A waveguide structure or a printed-circuit board is formed using a plurality of unit structures which are repetitively aligned in a one-dimensional manner or in a two-dimensional manner. The unit structure includes first and second conductive planes which are disposed in parallel with each other, a transmission line having an open end which is formed in a layer different from the first and second conductive planes and positioned to face the second conductive plane, and a conductive via electrically connecting the transmission line to the first conductive plane.
Abstract:
A seal board includes a circuit board with vias, conductor pins, and solder joints. The solder joints connect and seal each conductor pin to a single via, such that each conductor pin extends through the via and extends from a first side of the circuit board and a second side of the circuit board. The seal board is mounted to cover an opening in a bulkhead that separates a first compartment (such as a terminal block compartment) from a second compartment (such as an electronics or feature board compartment). The seal board provides electrical paths between the compartments while protecting components within one of the compartments from the surrounding environment.
Abstract:
A LED based lighting apparatus is disclosed. The light engine used in the lighting apparatus may use printed circuit board and have a plurality of LED groups that are independently controllable by a control unit. The power supply input and return paths connected to each LED group may be implemented on different layers to allow a compact footprint that may be used with traditional fluorescent encasements with relatively little modification. The LEDs may comprise a subset of LEDs having a first colour and a subset of LEDs having a second colour different from said first colour intertwined on the light engine.
Abstract:
A power supply board includes: a first board including a top surface on which a processor is capable of being mounted, a bottom surface located on an opposite side of the top surface, and a plurality of first through holes and a plurality of second through holes capable of being electrically connected with the processor by penetrating through the first board from the top surface to the bottom surface; a second board arranged at a position distant from the bottom surface of the first board and provided with a power supply device; a first conductor mounted on the bottom surface of the first board and electrically connects the plurality of first through holes and the power supply device, and a second conductor mounted on the bottom surface of the first board and electrically connects the plurality of second through holes and the power supply device.
Abstract:
A LED based lighting apparatus is disclosed. The light engine used in the lighting apparatus may use a multi-layer metal core printed circuit board and have a plurality of LED groups that are independently controllable by a control unit. The power supply input and return paths connected to each LED group may be implemented on different layers to allow a compact footprint that may be used with traditional fluorescent encasements with relatively little modification.
Abstract:
A microelectronic package can include a substrate and a microelectronic element. The substrate can include terminals comprising at least first power terminals and other terminals in an area array at a surface of the substrate. The substrate can also include a power plane element electrically coupled to the first power terminals. The area array can have a peripheral edge and a continuous gap between the terminals extending inwardly from the peripheral edge in a direction parallel to the surface. The terminals on opposite sides of the gap can be spaced from one another by at least 1.5 times a minimum pitch of the terminals. The power plane element can extend within the gap from at least the peripheral edge at least to the first power terminals. Each first power terminal can be separated from the peripheral edge by two or more of the other terminals.
Abstract:
A semiconductor device is provided with improved resistance to noise. Conductive planes are respectively formed over wiring layers. One wiring layer is provided with a through hole land integrally formed with a through hole wiring. In other wiring layers located over the wiring layer with the through hole land, openings are respectively formed in the conductive planes. The area of each of the openings is larger than the plane area of the through hole land.
Abstract:
A seal board includes a circuit board with vias, conductor pins, and solder joints. The solder joints connect and seal each conductor pin to a single via, such that each conductor pin extends through the via and extends from a first side of the circuit board and a second side of the circuit board. The seal board is mounted to cover an opening in a bulkhead that separates a first compartment (such as a terminal block compartment) from a second compartment (such as an electronics or feature board compartment). The seal board provides electrical paths between the compartments while protecting components within one of the compartments from the surrounding environment.