Abstract:
A mechanical chest compression device is secured to a gurney, transport stretcher or ambulance cot while engaging a patient's thorax to provide mechanical CPR during transport. The mechanical chest compression device compresses the patient's thorax against the gurney deck. The mechanical chest compression device may engage the side rails on the gurney, the gurney deck or any suitable structural elements of the gurney.
Abstract:
An automated chest compression device has a housing for supporting a patient and a motor within the housing. A conical drive spool is operatively connected to the motor and a cable, is operatively connected to the conical drive spool. The cable is adapted to extend at least partially around the chest of the patient. A controller is operable to control the motor to compress the chest to variable thresholds.
Abstract:
The present invention provides a method and apparatus for controlling the internal body temperature of a patient. According to the present invention, a catheter is inserted through an incision into a large blood vessel of a patient. By selectively heating or cooling a portion of the catheter lying within the blood vessel, heat may be transferred to or from blood flowing within the vessel and the patient's body temperature may thereby be increased or decreased as desired. The invention will find use in treating undesirable conditions of hypothermia and hyperthermia, or for inducing a condition of artificial hypothermia when desired. The method and system further provide for the cooling of initially hypothermic patients whose blood or body temperature has been warmed above the desired target level and the warming of initially hyperthermic patients whose blood or body temperature has been cooled below the desired target temperature.
Abstract:
A catheter is adapted to exchange heat with a body fluid, such as blood, flowing in a body conduit, such as a blood vessel. The catheter includes a shaft with a heat exchange region disposed at its distal end. This region may include hollow fibers which are adapted to receive a remotely cooled heat exchange fluid preferably flowing in a direction counter to that of the body fluid. The hollow fibers enhance the surface area of contact, as well as the mixing of both the heat exchange fluid and the body fluid. The catheter can be positioned to produce hypothermia in a selective area of the body or alternatively positioned to systemically cool the entire body system.
Abstract:
Devices and methods for performing CPR on a patient within an imaging field of an imaging device. The device has a compression belt and a belt tensioning mechanism, both located on or in the device such that the head, neck, thorax and abdomen of the patient may be place within the imaging field with the compression belt installed about the patient and the belt tensioning mechanism will be located outside of the imaging field.
Abstract:
A heat exchange fluid supply system for supplying a heat exchange fluid to an intravascular heat exchange catheter includes a disposable cassette having a bulkhead and an external heat exchanger, and which is configured to operate in combination with a reusable master control unit. The bulkhead includes a reservoir section and a pump section. The reservoir section is provided with a means to monitor the amount of heat exchange fluid that is in the system. The bulkhead provides the mechanism for priming the system with heat exchange fluid from an external source and for circulating fluid to the catheter in a closed circuit. The pump section is configured to allow for pumping of heat exchange fluid at a constant pressure.
Abstract:
Apparatus, systems and methods for cooling or warming the temperature of all or a portion of the body of a human or animal subject to treat disorders including but not limited to sepsis, septic shock or other inflammatory or infectious conditions which can result in shock, hypoxia, ischemia and/or multiple organ failure in human or animal subjects.
Abstract:
Methods and apparatus for preventing myocardial infarction, or lessening the size/severity of an evolving myocardial infarction, by cooling at least the affected area of the myocardium using an intravascular heat exchange catheter. The heat exchange catheter may be inserted into the vasculature (e.g., a vein) and advanced to a position wherein a heat exchanger on the catheter is located in or near the heart (e.g., within the vena cava near the patient's heart). Thereafter, the heat exchange catheter is used to cool the myocardium (or the entire body of the patient) to a temperature that effectively lessens the metabolic rate and/or oxygen consumption of the ischemic myocardial cells or otherwise protects the ischemic myocardium from undergoing irreversible damage or infarction.
Abstract:
A patient temperature control catheter (10) includes working fluid supply (16) and return (18) lumens through which working fluid circulates to exchange heat with a patient in whom the catheter is positioned. At least one lumen is defined by plural coils (32) axially spaced from each other. At least a first coil is a large coil that inflates with working fluid to seat against a wall of a blood vessel in which the catheter is positioned, with blood flowing through the coil so as not to block blood flow in the vessel. Alternate centering structures (116) are disclosed.