Abstract:
A wireless communication device comprises a transceiver configured to communicate information with one or more neighbor devices in accordance with a sync mode of a WiFi communication protocol, and a controller. The controller is configured to monitor for reception of at least one of a response frame or a beacon frame sent by any neighbor device, determine whether to schedule transmission of a service frame, and change operation to a background scan mode when the at least one of the response frame or the beacon frame sent by any neighbor device is undetected for a specified time duration and the transmission of a service frame is unscheduled.
Abstract:
Some demonstrative embodiments include devices, systems and methods of multi-user downlink transmission. For example, an apparatus may include a transmitter to transmit a multi-user (MU) downlink request to a plurality of wireless stations; and a receiver to receive one or more responses from one or more wireless stations of the plurality of wireless stations, wherein the transmitter is to transmit to the plurality of wireless stations a MU scheduling message indicating resources allocated to a downlink transmission to at least one scheduled station of the one or more wireless stations, and to transmit the downlink transmission to the at least one scheduled station according to the MU scheduling message.
Abstract:
The disclosure relates to a method, system and apparatus for extending Bluetooth low energy (BLE) technology to conserve energy in multi-mode wireless devices. In one embodiment, the disclosure relates to a device comprising a first module configured for radio communication at a non-BLE communication mode; a second module to communicate at a BLE communication mode; and a controller for controlling the first and the second communication modules, the controller configured to direct the BLE communication mode to at least one of advertise or scan for information relating to the non-BLE communication mode.
Abstract:
Methods, computer readable media, and wireless apparatuses are disclosed for a TXOP duration field. An apparatus is disclosed comprising processing circuitry configured to: encode a first high efficiency (HE) physical-layer convergence procedure (PLCP) protocol data unit (PPDU) comprising a transmission opportunity (TXOP) duration field in a first physical-layer portion of the first HE PPDU. The processing circuitry may be further configured to set the TXOP duration field value to indicate a largest duration value representable by the TXOP duration field that is equal to or less than a duration value indicated by the first MAC duration field, if the first HE PPDU is to include a first media access control (MAC) duration field in a first MAC-layer portion of the first HE PPUU.
Abstract:
Logic to “loosely” manage synch frame transmissions in a synch network via the devices synched to the network that implement the logic. Logic may distributedly adjust the frequency of attempting synch frame transmissions without estimating the size of the neighborhood. Logic in devices of a synch network to let each device maintain a Transmission Window (TW). Logic to determine the frequency of attempting synch frame transmissions based upon the TW. Logic to increase TW if the device detects a synch frame transmission. Logic to decrease TW if the device successfully transmits a synch frame. Logic to balance power consumption and discovery timing by adjusting the decrease in TW responsive to a synch transmission in relation to the increase in TW responsive to detection of a synch transmitted by another device.
Abstract:
Methods, computer readable media, and wireless apparatuses are disclosed for a TXOP duration field disable setting in a HE preamble, such as HE-SIG-A. An apparatus of a wireless device can include processing circuitry configured to decode a HE PPDU received from a second wireless device, the HE PPDU including a first TXOP duration field in a PHY portion of the HE PPDU. The processing circuitry can detect whether the TXOP duration field includes a disable flag based on bit values of the TXOP duration field. The disable flag can indicate absence of duration information in the TXOP duration field. Upon detecting the disable flag, a response HE PPDU can be encoded for transmission to the second wireless device. The response HE PPDU can include a second TXOP duration field with a disable flag within a PHY portion of the response HE PPDU.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of communicating over a data path. For example, an apparatus may include logic and circuitry configured to cause a Neighbor Awareness Networking (NAN) device to generate a message including an indication of a plurality of communication resources and one or more availability type indications corresponding to the plurality of communication resources, an availability type indication corresponding to a communication resource is configured to indicate an availability mode of the NAN device to communicate data over a data path using the communication resource; and to transmit the message.
Abstract:
Some demonstrative embodiments include apparatuses, devices and/or methods. For example, an apparatus may include a memory, and processing circuitry coupled to the memory. The processing circuitry is configured to execute logic stored in the memory to cause a power-constrained Neighbor Awareness Networking (NAN) Device (PD NAN Device) within a NAN Cluster to transition to a non-synchronization-frame (non-Sync-frame) mode based on a triggering event including at least one of: reception, by a NAN layer of the PD NAN Device, of transition instructions from a Service/Application layer of the PD NAN Device; or reception by the PD NAN Device of a management frame from a non-power-constrained NAN Device (non-PD NAN Device), the management frame including information on the PD NAN Device transitioning to a non-Sync-frame transmitter mode.
Abstract:
Methods and systems for authenticated wake-up radio frames are disclosed. In one aspect, a method includes generating a wake-up radio (WUR) integrity group key (IGTK) for authentication of WUR frames when received by a wake-up radio (WURx). The WUR IGTK may be identified via a key identifier in the WUR frame. The key identifier may be updated when the WUR IGTK is updated, facilitating WUR IGTK key updating across multiple associated stations.
Abstract:
A network communication device comprises physical layer (PHY) circuitry configured to transmit and receive radio frequency electrical signals to communicate directly with one or more separate network devices; and medium access control layer (MAC) circuitry. The MAC circuitry is configured to: initiate transmission of a packetized message that includes a neighbor awareness networking (NAN) public action frame; receive a data connection request message from a second network device that includes one or more quality of service (QoS) requirements; initiate transmission of a data connection response message that includes data exchange time window information and channel information; and communicate data device-to-device with the second network device according to the data exchange time window information and channel information.