Abstract:
The present invention relates to a method and an apparatus for transmitting uplink signals to a plurality of transmission points in a wireless communication system, comprising: receiving information on at least one parameter set group through upper layer signaling, wherein each of the at least one parameter set group includes a plurality of parameter sets; detecting a physical downlink control channel (PDCCH) comprising indication information for indicating specific parameter sets which belong to one of the parameter set groups from among the at least one parameter set group; and transmitting a physical uplink shared channel (PUSCH) by using the specific parameter set, wherein each of the plurality of parameter sets includes information on a power control parameter and information on timing advance (TA) for transmitting the PUSCH signal.
Abstract:
A method for transmitting ACK/NACK information in response to a downlink transmission in a relay node (RN) of a wireless communication system; and the RN therefore are discussed. The method according to one embodiment includes receiving downlink transmissions in downlink subframes; and transmitting the ACK/NACK information for the downlink transmissions in one uplink subframe associated with the downlink subframes. The downlink subframes and the uplink subframe are configured for a time division duplex (TDD). Physical uplink control channel (PUCCH) resources are configured by a higher layer, and each of the PUCCH resources corresponds to each of the downlink subframes. Each of the downlink subframes associated with the one uplink subframe is sequentially mapped to each of the PUCCH resources starting from a downlink subframe among the downlink subframes that is closest in time to the one uplink subframe.
Abstract:
Provided are a method and a terminal device for setting uplink transmission power in a wireless communication system. A terminal acquires information on the time alignment group (TAG) for multiple supportable serving cells so as to constitute TAGs, checks whether an overlap section of subframe n and subframe n+1 for uplink transmission exists between TAGs, and sets uplink transmission power so as to scale the uplink transmission power (PCMAX) within the range that does not exceed the configured maximum transmission power (PCMAX) of the terminal in the checked overlap section. Here, the uplink transmission power considers the maximum transmission power for multiple serving cells contained in the TAGs.
Abstract:
A method for transmitting uplink control information by a user equipment (UE) configured with a plurality of cells including a primary cell and a secondary cell in a wireless communication system is discussed. The method includes identifying, by the UE, a Hybrid Automatic Repeat reQuest-Acknowledgement (HARQ-ACK)(0) and a HARQ-ACK(1); and transmitting, by the UE, bits b(0)b(1) using a Physical Uplink Control Channel (PUCCH) resource among a plurality of PUCCH resources based on the HARQ-ACK(0) and the HARQ-ACK(1) to a base station (BS) for identifying the HARQ-ACK(0) and the HARQ-ACK(1). The b(0)b(1) and the PUCCH resource are given according to a relation including Table 1, where the HARQ-ACK(0) indicates an ACK/Negative ACK (ACK/NACK)/Discontinuous Transmission (DTX) response to a data block related to the primary cell, and the HARQ-ACK(1) indicates an ACK/NACK/DTX response to a data block related to the secondary cell.
Abstract:
A wireless communication system is disclosed. A method for transmitting uplink control information in a wireless communication system supporting carrier aggregation and operating in TDD includes: generating a first HARQ-ACK (hybrid automatic repeat request—acknowledgement) set for a first cell using a value M; generating a second HARQ-ACK set for a second cell using the value M; and transmitting a bit value corresponding to a third HARQ-ACK set including the first HARQ-ACK set and the second HARQ-ACK set in an uplink subframe n, wherein M=max(M1, M2), max(M1, M2) representing a value being equal to or larger than not smaller between M1 and M2, wherein M1 corresponds to the number of downlink subframes corresponding to the uplink subframe n in the first cell, and M2 corresponds to the number of downlink subframes corresponding to the uplink subframe n in the second cell, wherein the first cell and the second cell have different UL-DL configurations.
Abstract:
In the present invention, a demodulation reference signal is transmitted using a plurality of settings in which demodulation reference signals occupy different positions in at least a density or time-frequency resource region of the demodulation reference signals. A base station can transmit, to the user device, information indicating a setting related to a downlink signal or a setting related to an uplink signal from among the plurality of settings, and the user device can receive the demodulation reference signal with the downlink signal or transmit the demodulation reference signal With the uplink signal according to the indicated setting.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method and apparatus for a terminal to receive a downlink signal in a wireless communication system. The method includes the steps of: receiving a downlink signal through a downlink period in a subframe including the downlink period, a gap period, and an uplink period; and demodulating the downlink signal, wherein the length of the downlink period is less than or equal to half of the subframe. When the downlink signal is received on a first type of carrier, the downlink signal is demodulated using a first cell-common reference signal. When the downlink signal is received on a second type of carrier, the downlink signal is demodulated using a terminal-specific reference signal.
Abstract:
A method for receiving downlink data in a wireless communication system is provided. A user equipment receives downlink control information via a downlink control channel in a subframe. The downlink control information includes reference signal (RS) information and physical downlink shared channel (PDSCH) information. The RS information indicates transmission antenna ports, a scrambling identity and a number of transmission layers. The user equipment receives a RS for demodulating a PDSCH based on the RS information in the subframe. The RS is generated based on the scrambling identity. The user equipment receives downlink data via the PDSCH in the subframe. Resource element (RE) mapping information on REs assigned for the PDSCH is determined based on the PDSCH information.
Abstract:
A method and apparatus for handling a secondary cell (SCell) deactivation timer in a wireless communication system is provided. When a user equipment (UE) is receiving a specific channel or service on a SCell from a network, the UE may start or restart a SCell deactivation timer whenever the SCell deactivation timer expires. Alternatively, the UE may delay expiry of a SCell deactivation timer whenever the SCell deactivation timer expires.
Abstract:
The present invention relates to a wireless communication system. The present invention more particularly relates to a method for transmitting control information in an FDD cell by a device, and an apparatus for same, the method comprising the steps of: receiving SF reconfiguration information about a UL CC; receiving on the FDD cell a PDCCH comprising DCI; receiving on the FDD cell a PDSCH indicated by means of the PDCCH; and transmitting, on the UL CC, HARQ-ACK information about the PDSCH, wherein if the PDSCH has been received on the DL CC, the DCI does not comprise a DAI field and if the PDSCH has been received on the UL CC, the DCI comprises the DAI field.