Abstract:
A method is provided for transmitting and receiving at least one of control information and a response signal at a user equipment (UE) in a carrier aggregation based wireless communication system. A first cell group having a primary cell (PCell) is configured. A second cell group having one or more secondary cells (SCells) is configured. A procedure of transmitting and receiving at least one of specific cell-related control information and a response signal is performed. If the first cell group and the second cell group are managed by a same base station, at least one of the control information and the response signal is transmitted and received on the first cell group or the second cell group. If the first cell group and the second cell group are managed by different base stations, at least one of the control information and the response signal is transmitted and received only on one of the first cell group or the second cell group according to control information type.
Abstract:
A method for reporting, by a UE, a downlink channel state in a wireless communication system according to an embodiment of the present invention includes: receiving a vertical precoding matrix indicator (PMI) to be used to calculate the downlink channel state; calculating a value of the downlink channel state using the received vertical PMI; and reporting the calculated downlink channel state value to an eNB, wherein the received vertical PMI is used from a later subframe between a subframe in which the vertical PMI is received and a subframe preceding a subframe in which the calculated downlink channel state value is reported by the number of subframes necessary to calculate the downlink channel state value using the received vertical PMI.
Abstract:
Provided are a method of controlling transmission power for an uplink control channel for a terminal to which a plurality of cells are assigned, and a device using the method. The method receives a first set of parameters and a second set of parameters that are used for determining transmission power for the uplink control channel and determines the transmission power for the uplink control channel by using the first set of parameters or the second set of parameters, wherein the first set of parameters or the second set of parameters is used according to one of the cells to which the uplink control channel is transmitted.
Abstract:
Method for decoding data in a downlink subframe involves a terminal receiving downlink data in a data subframe transmitted in a first serving cell; the terminal receiving configuration information about PRS subframes which transmit PRS, wherein the PRS subframes are transmitted in a second serving cell; and determining whether the terminal decodes, according to the configuration information, the data transmitted through a PDSCH or an EPDCCH in the data subframe, wherein the decoding of the data transmitted through the PDSCH or the EPDCCH is abandoned by the terminal when a first CP length of the data subframe is different from a first subframe CP length of a first frame which includes the data subframe, and the data subframe may overlap with at least one PRS subframe of the PRS subframes.
Abstract:
Disclosed are a method and an apparatus for transmitting and receiving data. A method for transmitting an uplink comprises the steps of: a terminal determining the size of an ACK/NACK payload according to a transmission mode of a first serving cell and a transmission mode of a second serving cell; the terminal establishing a transmission power for transmitting the ACK/NACK payload based on the size of the ACK/NACK payload; and the terminal transmitting the ACK/NACK payload through a physical uplink control channel (PUCCH) based on the transmission power.
Abstract:
A method of demodulating data according to an embodiment of the present invention is presented. The method of demodulating data may include: setting a terminal to be in a transmission mode of PDSCH to which transmission diversity is applied; receiving resource allocation information on the PDSCH by the terminal; transmitting downlink (DL) data onto the PDSCH to which the transmission diversity is applied, according to the resource allocation information; receiving, from a base station, information on the number of antenna ports used for receiving a reference signal that is used for demodulating the DL data; and receiving a reference signal used for demodulating the DL data. The reference signal may be generated based on the identifier of the terminal, and the number of antenna ports used for receiving the reference signal may be the same as the number of antenna ports used for receiving the PDSCH.
Abstract:
The present invention relates to a wireless communication system. In detail, the invention relates to a method for a terminal to transmit a UCI in a carrier aggregation-based wireless communication system, and to an apparatus therefor, wherein the method involves the steps of: forming a first cell group having a PCell; forming a second cell group having one or more SCells; receiving one or more data in the second cell group; and transmitting HARQ-ACK information on the one or more data through a PUCCH, wherein, when the first and second cell groups are managed by an identical base station, the HARQ-ACK information is transmitted in the PCell, and, when the first and second cell groups are managed by different base stations, the HARQ-ACK information is transmitted in the second cell group.
Abstract:
A method for transmitting an uplink signal at a User Equipment (UE) in a wireless communication system includes receiving, from a Base Station (BS), an uplink scheduling grant for multi-antenna transmission; transmitting the uplink signal precoded using precoding information included in the received uplink scheduling grant to the BS; and retransmitting the uplink signal to the BS according to Acknowledgment/Negative Acknowledgment (ACK/NACK) corresponding to the transmitted uplink signal. The retransmitted uplink signal is precoded using precoding information included in a most recent uplink scheduling grant or a predetermined precoding matrix if an uplink scheduling grant for the retransmission is not received from the BS.
Abstract:
The present invention relates to a method for transmitting a signal of a transmitting side in a wireless communication system that supports multiple antennas. More particularly, the method comprises the steps of: receiving, from a receiving side, feedback information for transmitting the signal of the transmitting side; and transmitting a signal to which a precoding matrix (W) is applied on the basis of the feedback information, wherein the precoding matrix (W) is expressed as a multiplication of two precoding matrices (W1 and W2), W1 is set to correspond to a plurality of antenna groups configured according to the feedback information, and W2 is configured such that the signal corresponding to the plurality of antenna groups can be transmitted in a mutual orthogonal way.
Abstract:
A method for transmitting an uplink signal at a User Equipment (UE) in a wireless communication system includes receiving, from a Base Station (BS), an uplink scheduling grant for multi-antenna transmission; transmitting the uplink signal precoded using precoding information included in the received uplink scheduling grant to the BS; and retransmitting the uplink signal to the BS according to Acknowledgment/Negative Acknowledgment (ACK/NACK) corresponding to the transmitted uplink signal. The retransmitted uplink signal is precoded using precoding information included in a most recent uplink scheduling grant or a predetermined precoding matrix if an uplink scheduling grant for the retransmission is not received from the BS.