Abstract:
A field emission device of simple structure enables stabilization and control of field emission current. Emission current is controlled by a plurality of control voltage systems. An emitter having a sharp tip is fabricated by processing a p-type semiconductor substrate, and an n-type source region is provided on the p-type semiconductor substrate surface at a position that is laterally separated from the emitter. An electrode layer having an aperture facing the apex portion of the emitter is provided on an insulating layer, the electrode layer extending to above the n-type source region. Voltage applied to the electrode layer to apply an extractor field to the apex portion of the emitter and to induce inversion layers at the emitter surface and the surface of the p-type semiconductor substrate. The electrode layer is divided into a plurality of electrodes. An extraction voltage is applied to one of these electrodes closest to the emitter, another electrode is connected to an X selection line and another to a Y selection line, thereby controlling emission current.
Abstract:
A process for manufacturing a field emission element including a substrate, and an emitter and a gate each arranged on the substrate is provided. The emitter is formed at at least a tip portion thereof with an electron discharge section, which is formed of metal or semiconductor into a monocrystalline structure or a polycrystalline structure preferentially oriented in at least a direction perpendicular to the substrate by deposition.
Abstract:
A field emission display and a method therefor, which can substantially improve uniformity of electrons emitted from numerous micro-tips formed to be applied to a flat panel display, by etching the edges of cathodes which are shaped into stripes and forming resistance portions in the etched areas, thereby improving an excessive etching and roughness made in etching a hole in an area for forming a micro-tip. Thus, the display is free of the decrease in tip-adhesion, so that the process efficiency can be increased up to 90% and the uniformity difference between the electrons emitted from a plurality of micro-tips can be maintained at .+-.5% in the edge and center of the cathode.
Abstract:
A field emitter device includes a column conductor, an insulator, and a resistor structure for advantageously limiting current in a field emitter array. A wide column conductor is deposited on an insulating substrate. An insulator is laid over the column conductor. A high resistance layer is placed on the insulator and is physically isolated from the column conductor. The high resistance material may be chromium oxide or 10%-50% wt % Cr+SiO. A group of microtip electron emitters is placed over the high resistance layer. A low resistance strap interconnects the column conductor with the high resistance layer to connect in an electrical series circuit the column conductor, the high resistance layer, and the group of electron emitters. One or more layers of insulator and a gate electrode, all with cavities for the electron emitters, are laid over the high resistance material. One layer of insulator is selected from a group of materials including SiC, SiO, and Si.sub.3 N.sub.4. An anode plate is attached with intermediate space between the anode plate and the microtip electron emitters being evacuated.
Abstract:
A field emission type electron source capable of permitting a resistance value between a cathode wiring and each of emitter cones to be set at substantially the same level and increasing packaging density of the emitter cones. The electron source includes stripe-like cathode wirings arranged on an insulating substrate. The cathode wirings each are formed with a plurality of windows, so that a plurality of island-like cathode conductors and resistance layers different in resistance value from each other are formed separate from the cathode wiring. Then, a resistance layer, an insulating layer and a gate electrode are formed thereon. The gate electrode and insulating layer are formed with apertures in a manner to be common to both, in which the emitter cones are arranged, resulting in emission of electrons from the emitter cones of each group unit being rendered uniform.
Abstract:
A micropoint assembly of a field emission device ("FED") including a baseplate, one or more conductors formed over the baseplate, and one or more micropoints formed over the conductor(s) is disclosed. The micropoint assembly further includes resistive structures associated with specific FED elements that limit current to a maximum level and minimize impact to remaining elements of the device. Any variation in resistivity is uniformly distributed since the same process is consistently applied across a plurality of element locations.
Abstract:
A cold cathode field emission display is described. A key feature of its design is that each group of microtips that constitute a pixel is located on the same equipotential surface and a reliable ballast resistor is interposed between the equipotential surface and the cathode line which powers the pixel. An efficient method for manufacturing the display is also described.
Abstract:
A design for a field emission device comprising a cold cathode emitter, a control gate and a focus gate, is discussed. The focus gate is connected to the emitter voltage source and a ballast resistor is inserted between this connection point and the emitter. This ensures that the focus gate will always be more negative than the emitter, this difference in potential increasing with increasing emitter current. This leads to a linear current-voltage characteristic for the device and also makes for a tighter electron beam than that provided by designs of the prior art. A physical realization of the design is described along with a cost effective method for manufacturing said physical realization.
Abstract:
A field emission device (10) utilizes a resistive layer (13) between an extraction grid (14) and a conductive layer (12) to form a resistor (23). The resistor controls the amount of current flowing through an emission tip (16) of the field emission device (10).
Abstract:
An electron emitter plate (110) for an FED image display has an extraction (gate) electrode (122, 222) spaced by a dielectric insulating layer (25) from a cathode electrode including a conductive mesh (118, 218). Circular arrays (112) of microtips (14) are located concentrically within mesh spacings (116, 216) on a resistive layer (15), within apertures (26) formed on ring-shaped pads (127, 227) patterned in an extraction electrode (122). Mesh spacings (116) and pads (127) are circular. Mesh spacings (226) and pads (227) are hexagonal. For reduced capacitance, dielectric material (25) is etched from cores (144) of rings (127, 227) and from toroidal regions (148) below rings (127, 227). Mesh spacings (116, 216) are hexagonal close-packed and mesh material (118, 218) is removed from portions (142) of cathode electrode. Y-shaped bridging strips (129') have nodes (146) located over removed cathode electrode portions (142).