Abstract:
Data may be stored in a non-volatile memory array in adaptive metablocks that are configured according to the locations of data boundaries in the data. Data may be stored in an intermediate format and later copied to adaptive metablocks configured for the data. Data in intermediate format may be stored in non-volatile random access memory or in a portion of the non-volatile memory array.
Abstract:
Host system data files are written directly to a large erase block flash memory system with a unique identification of each file and offsets of data within the file but without the use of any intermediate logical addresses or a virtual address space for the memory. Directory information of where the files are stored in the memory is maintained within the memory system by its controller, rather than by the host.
Abstract:
System and method for transferring data between a host system and a data storage system is provided. The system includes an interface that uses a file based protocol to transfer data between the data storage system and the host system, wherein the data storage system includes a first mass storage device and a second mass storage device; wherein the first mass storage device is a solid state non-volatile memory device and the second mass storage device is a non-solid state memory device. The first mass storage device is a flash memory device that operates as a primary storage device that stores data on a file by file basis. The second mass storage device is a magnetic disk drive that operates as secondary storage device and stores data received via a logical interface.
Abstract:
Host system data files are written directly to a large erase block flash memory system with a unique identification of each file and offsets of data within the file but without the use of any intermediate logical addresses or a virtual address space for the memory. Directory information of where the files are stored in the memory is maintained within the memory system by its controller, rather than by the host. A type of memory block is selected to receive additional data of a file that depends upon the types of blocks into which data of the file have already been written. Blocks containing data are selected for reclaiming any unused capacity therefrom by a process that selects blocks in order starting with those containing the least amount of valid data.
Abstract:
Host system data files are written directly to a large erase block flash memory system with a unique identification of each file and offsets of data within the file but without the use of any intermediate logical addresses or a virtual address space for the memory. Directory information of where the files are stored in the memory is maintained within the memory system by its controller, rather than by the host. The file based interface between the host and memory systems allows the memory system controller to utilize the data storage blocks within the memory with increased efficiency.
Abstract:
Host system data files are written directly to a large erase block flash memory system with a unique identification of each file and offsets of data within the file but without the use of any intermediate logical addresses or a virtual address space for the memory. Directory information of where the files are stored in the memory is maintained within the memory system by its controller, rather than by the host. The file based interface between the host and memory systems allows the memory system controller to utilize the data storage blocks within the memory with increased efficiency.
Abstract:
A data storage device is provided. A disk device is combined with a non-volatile memory device to provide much shorter write access time and much higher data write speed than can be achieved with a disk device alone. Interleaving bursts of sector writes between the two storage devices can effectively eliminate the effect of the seek time of the disk device. Following a non-contiguous logical address transition from a host system, the storage controller can perform a look-ahead seek operation on the disk device, while writing current data to the non-volatile memory device. Such a system can exploit the inherently faster write access characteristics of a non-volatile memory device, eliminating the dead time normally caused by the disk seek time.
Abstract:
Pure, concentrated ammonia is recovered from aqueous liquors by stripping off gas water, de-acidifications, scrubbing and withdrawing ammonia from the top of a scrubbing column.
Abstract:
Method and mass storage memory system is provided. The system includes, re-programmable non-volatile memory cells, the memory cells being arranged in a plurality of blocks that are erasable together; and a controller including a microprocessor that is adapted to receive files of data identified by unique identifiers via a first interface and the controller causes a received data file to be stored in one or more memory blocks; and the controller receives data identified by logical addresses via a second interface and stores the received data in one or more memory blocks, wherein data written via the first interface is indexed using the unique identifiers so that data is accessible via the second interface or the first interface; and data received via the second interface is indexed so that data can be accessed via the first interface or the second interface.
Abstract:
Files that are mapped to a logical address range by a host become logically fragmented prior to being sent to a memory system. Subsequently, the logically fragmented portions are reassembled when they are stored in blocks in the memory system. The host supplies information to the memory system regarding file-to-logical mapping of data prior to sending the data. The memory selects storage locations for the data based on the files to which the data belong.