Abstract:
Method of increasing the permeability in subterranean formations comprising rock that is soluble by acid, in particular carbonatic formations, using a formulation comprising at least an acid and a retarding surfactant which is an amphoteric surfactant. Preferably, the acid comprises methanesulfonic acid.
Abstract:
The present invention relates to silylated polyisocyanates, to processes for preparing them, to their use, and to coating compositions comprising them.
Abstract:
The present invention refers to a method for controlling undesired vegetation at a plant cultivation site, the method comprising the steps of providing, at said site, a plant that comprises at least one nucleic acid comprising a nucleotide sequence encoding a wild-type hydroxyphenyl pyruvate dioxygenase or a mutated hydroxyphenyl pyruvate dioxygenase (mut-HPPD) which is resistant or tolerant to a HPPD-inhibiting herbicide and/or a nucleotide sequence encoding a wild-type homogentisate solanesyl transferase or a mutated homogentisate solanesyl transferase (mut-HST) which is resistant or tolerant to a HPPD-inhibiting herbicide, preferably a bicycloarylcarboxamide, applying to said site an effective amount of said herbicide. The invention further refers to plants comprising mut-HPPD, and methods of obtaining such plants.
Abstract:
Proposed is a separation method in a toluene to dinitrotoluene process, wherein said method with a first process step comprising feeding a toluene comprising first stream (1) and a nitric acid comprising second stream (2) into a first reactor (R1), re acting of the toluene comprising first stream (1) and the nitric acid comprising second stream (2) within the first reactor (R1) to a first reaction mixture (3), said first reaction mixture (3) comprising a first liquid/liquid mixed phase of an acid phase and an organic in phase comprising mononitrotoluene, feeding the first reaction mixture (3) into a first separation device (S1), separating the first reaction mixture (3) within the first separation device (S1) into a first forward stream (4) having a flow direction to a second process step and a first backward stream (5) having a flow direction back to the first reactor (R1), said method having a second process step comprising feeding the first forward stream (4) into a second reactor (R2), feeding a nitric acid comprising third stream (6) and a sulfuric acid comprising fourth stream (7) into the second reactor (R2), reacting of the first forward stream (4), the nitric acid comprising third stream (6) and the sulfuric acid comprising fourth stream (7) within the second reactor (R2) to a second reaction mixture (8), said second reaction mixture (8) comprising a second liquid/liquid mixed acid phase and an organic phase comprising mononitrotoluene and dinitrotoluene, feeding the second reaction mixture (8) into a second separation device (S2), separating the second reaction mixture (8) within the second separation device (S2) into a second forward stream (9) having a flow direction to a process output and a second backward stream (10) having a flow direction back to the first reactor (R1), wherein fine separating of at least one of the streams (4, 5, 9,10) after the first separation step (S1) and/or the second separation step (S2) in a coalescer is carried out.
Abstract:
The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.
Abstract:
Stablized aqueous solutions of aliphatic unsaturated sulfonic acids which contain aliphatic chlorine compounds, and nickelplating baths containing said stabilized aqueous solutions as brighteners.
Abstract:
The present disclosure relates to a diisocyanate stabilizer, use of the diisocyanate stabilizer for stabilizing diisocyanate, and a diisocyanate composition comprising the stabilizer. The diisocyanate stabilizer comprises a sterically hindered phenol other than butylated hydroxytoluene, a thioether, and a phosphite other than triphenyl phosphite. The present disclosure aims to provide a diisocyanate stabilizer which can make diisocyanates maintain stable during long-term storage and heating condition.
Abstract:
A computer implemented method for generating synthesis specifications comprising the steps of providing to a computer processor via a communication interface a proposed target application property of the new synthesis specification; providing to the computer processor via the communication interface a data driven model, parametrized based on historical synthesis specifications comprising historical list of components, historical amounts for each of the components and historical target criteria, determining via the computer processor a target synthesis specification based on the data driven model and the target application property providing to an output unit via the communication interface the target synthesis specification, comprising a list of target components and the amount of each of the components.
Abstract:
An aqueous suspension comprising water, a zeolitic material and one or more of copper and iron, and a chelate complex comprising a zirconium ion and a bidentate organic ligand bonded to said zirconium ion via zirconium oxygen bonds from two oxygen atoms comprised in said ligand, said chelate complex being dissolved in the water.
Abstract:
The presently invention provides an emission control catalyst article comprising a substrate, a bottom washcoat layer comprising a platinum group metal coated on the 60 to 100% length of the substrate, and a top washcoat layer comprising a platinum group metal coated on the 60 to 100% length of the substrate such that the top coat covers at least 60% of the length of the bottom washcoat layer, wherein at least a portion of the top washcoat layer, the bottom washcoat layer or both washcoat layers comprises a platinum group metal deposited within the said washcoat layer(s) with a platinum group metal gradient such that the PGM concentration in a top-most portion of the said washcoat layer is at least two time higher compared to the PGM concentration in a bottom-most portion of the said washcoat layer.