Abstract:
A method and system to decode a video stream are provided. The method comprises receiving macroblocks, filtering and decimating the macroblocks to create decimated macroblocks and storing the decimated macroblocks. The method further comprises creating a decimated reference block from one or more decimated macroblocks of a decimated reference picture and interpolating selected pixels of the decimated reference block to create an interpolated reference block. The method further comprises pre-processing selected columns of the interpolated reference block to create a processed reference block for motion compensation.
Abstract:
Error concealment for motion picture expert group (MPEG) decoding with personal video recording functionality. The present invention is operable to perform error concealment of MPEG data within various components within playback, recording, reading and writing data systems. The present invention is operable within existing systems whose components may not be capable of accommodating errors within MPEG data. Whereas prior art systems typically cannot deal with any corruption without either losing the data or suffering some operational failure, the present invention is able to conceal these errors and to continue decoding and presentation of the MPEG data. In certain embodiments, this involves maximizing the available data that contain no errors to conceal those portions of the data that do include errors. The present invention is operable to accommodate various layers while performing error concealment, including the MPEG transport stream layer, the video layer, and the audio layer.
Abstract:
Presented herein are hardware implementations for inverse scanning for a plurality of standards. In one embodiment, there is presented a system for decoding video data. The system comprises an inverse scanner for inverse scanning video data encoded in accordance with a first encoding standard and for inverse scanning video data encoded in accordance with a second encoding standard. In another embodiment, there is presented a decoder for decoding video data. The decoder comprises an inverse scanner. The inverse scanner is operable to inverse scan video data encoded in accordance with a first encoding standard and inverse scan video data encoded in accordance with a second encoding standard.
Abstract:
Presented herein is a unified decoder architecture. A system comprises a video decoder, instruction memory, and a host processor. The video decoder decodes the video data encoded with the particular standard. The instruction memory stores a first set of instructions and a second set of instructions. The first set of instructions are for decoding encoded video data according to a first encoding standard. The second set of instruction are for decoding encoded video data according to a second encoding standard. The host processor provides an indication to the video decoder indicating the particular encoding standard. The video decoder executes the first set of instructions if the indication indicates that the particular encoding standard is the first encoding standard and executes the second set of instructions if the indication indicates that the particular encoding standard is the second encoding standard.
Abstract:
Error concealment for motion picture expert group (MPEG) decoding with personal video recording functionality. Error concealment of MPEG data may take place within various components within playback, recording, reading and writing data systems. The error concealment may be provided within existing systems whose components may not be capable of accommodating errors within MPEG data. In certain embodiments, the available data that contain no errors is maximized to conceal those portions of the data that do include errors. Various layers may be accommodated while performing error concealment, including the MPEG transport stream layer, the video layer, and the audio layer.
Abstract:
Presented herein are optimized single inverse quantization engines for a plurality of standards. In one embodiment, there is presented a system for inverse quantizing quantized frequency coefficients. The system comprises an inverse quantizer for inverse quantizing video data encoded in accordance with a first encoding standard and for inverse quantizing video data encoded in accordance with a second encoding standard. In another embodiment, there is presented a decoder for decoding video data. The decoder comprises an inverse quantizer operable to inverse quantize video data encoded in accordance with a first encoding standard and for inverse quantizing video data encoded in accordance with a second encoding standard.
Abstract:
Presented herein is a unified decoder architecture. A system comprises a video decoder, instruction memory, and a host processor. The video decoder decodes the video data encoded with the particular standard. The instruction memory stores a first set of instructions and a second set of instructions. The first set of instructions are for decoding encoded video data according to a first encoding standard. The second set of instruction are for decoding encoded video data according to a second encoding standard. The host processor provides an indication to the video decoder indicating the particular encoding standard. The video decoder executes the first set of instructions if the indication indicates that the particular encoding standard is the first encoding standard and executes the second set of instructions if the indication indicates that the particular encoding standard is the second encoding standard.
Abstract:
Error concealment for motion picture expert group (MPEG) decoding with personal video recording functionality. Error concealment of MPEG data may take place within various components within playback, recording, reading and writing data systems. The error concealment may be provided within existing systems whose components may not be capable of accommodating errors within MPEG data. In certain embodiments, the available data that contain no errors is maximized to conceal those portions of the data that do include errors. Various layers may be accommodated while performing error concealment, including the MPEG transport stream layer, the video layer, and the audio layer.
Abstract:
Presented herein are system(s), and method(s) for inverse quantizing data from a plurality of standards. In one embodiment, there is presented a system for decoding data. The system comprises a host processor and an inverse quantizer. The host processor provides inverse quantization parameters from a first standard and from a second standard that are transcoded to a particular format. The inverse quantizer receives the transcoded quantization parameters in the particular format and inverse quantizes quantized data quantized in accordance with the first standard and the second standard based on the transcoded quantization parameters.
Abstract:
Presented herein are systems, methods, and apparatus for DC coefficient transformations. In one embodiment, there is presented a circuit for transforming a data matrix. The circuit comprises a controller and a plurality of stages. The controller fetches a row or column of elements from the data matrix. The plurality stages are associated with a plurality of elements in a product matrix and add or subtract each element of the row or column of elements to a plurality of running totals, wherein each of the plurality of elements in the product matrix are a function of the element.