Abstract:
A system for testing memory includes logic that is configured to perform various normal memory operations (e.g., erase, read and write operations) on a memory device and to determine operational parameters associated with the memory operations. As an example, the amount of time to perform one or more memory operations may be measured, or a number of errors resulting from the memory operations may be counted or otherwise determined. One or more of the operational parameters may then be analyzed to determine whether they are in a range expected for counterfeit memory. If so, the logic determines that the memory under test is counterfeit (e.g., is recycled or counterfeit) and provides a notification about the authenticity of the memory. The logic may also estimate the age of the memory based on the operational parameters.
Abstract:
An organoantimony compound represented by the formula (1), processes for producing polymers with use of the compound, and polymers wherein R1 and R2 are C1-C8 alkyl, aryl, substituted aryl or an aromatic heterocyclic group, R3 and R4 are each a hydrogen atom or C1-C8 alkyl, and R5 is aryl, substituted aryl, an aromatic heterocyclic group, oxycarbonyl or cyano.
Abstract:
An exemplary random number generation system leverages the r includes at least one solar power panel of a solar power system, at least one sensor and a random number generator. The sensor senses one or more output parameters (e.g., voltage or current) from the solar power system and provides the sensed parameter to the random number generator, which uses the sensed parameter to generate a number that is truly random (i.e., is not deterministic). As an example, the random number generator may receive multiple samples of the measured parameter and generate a random number based on a difference of the multiple samples. If desired, the random number generator may include an algorithm to remove biasing in the random number.
Abstract:
A system for improving radiation tolerance of memory senses an amount of radiation exposure and, based on the sensed amount of radiation exposure, determines whether to perform one or more techniques for mitigating the effects of the radiation exposure. As an example, the system may perform a data refresh operation by re-writing data that has been corrupted by radiation, or the system may adjust the reference voltage used to read memory cells. In another example, the system may perform a fault repair operation by re-programming cells that have erroneously transitioned from a program state to an erase state. The system may selectively perform different radiation-mitigation techniques in a tiered approach based on the sensed amount of radiation in order to limit the adverse effects of the more invasive techniques.
Abstract:
A system performs analog memory sanitization by forcing voltage levels in memory cells to substantially the same voltage level so that they are indistinguishable regardless of the data that has been previously stored in the cells. In some embodiments, a special programming operation for sanitizing a plurality of memory cells forces the charge in the cells to approximately the same voltage level by increasing the voltage level of all cells regardless of the data currently stored in the cells. As an example, each cell may be programmed to a logical high bit value (e.g., a “0”) by increasing the charge in each cell to a voltage level that is greater than the voltage level for writing the same logical bit value in a normal programming operation. Thus, after the programming operation is performed, the voltage levels of cells storing one logical bit value (e.g., a “0”) prior to the programming operation may be indistinguishable from voltage levels of cells storing a different logical bit value (e.g., a “1”) prior to the programming operation.
Abstract:
A memory system performs analog sanitization of memory using a partial programming operation to overwrite existing data taking into account the relative voltage levels in the memory cells. By taking into account the relative voltage levels, the timing of a partial programming operation can be controlled to provide matched voltage levels in the memory cells so that conventional computer forensic techniques for data recovery are ineffective.
Abstract:
A method for radiation hardening flash memory performs accelerated aging on the flash memory by program-erase (PE) cycling the flash memory. Such accelerated aging induces trap states in the tunnel oxide layer of the flash memory, which results in improved ionizing radiation tolerance. The number of cycles used to harden a given memory cell is optimally determined in order to limit effects of the radiation hardening on the reliability of the cell.
Abstract:
An organoantimony compound represented by the formula (1), processes for producing polymers with use of the compound, and polymers wherein R1 and R2 are C1-C8 alkyl, aryl, substituted aryl or an aromatic heterocyclic group, R3 and R4 are each a hydrogen atom or C1-C8 alkyl, and R5 is aryl, substituted aryl, an aromatic heterocyclic group, oxycarbonyl or cyano.