Abstract:
A NOR flash memory device includes a substrate having trenches that extend in a first direction and stepped portions that are arranged between the trenches. A bit region having a linear shape extends in a second direction substantially perpendicular to the first direction in the substrate. The bit region is doped with impurities. A first dielectric layer is on the substrate having the trenches. An electric charge trap layer is on the first dielectric layer. A second dielectric layer is on the electric charge trap layer. An upper electrode is on sidewalls of the trenches. The upper electrode has a spacer shape. Related fabrication methods are also described.
Abstract:
A non-volatile memory device includes gate structures, an insulation layer pattern, and an isolation structure. Multiple gate structures being spaced apart from each other in a first direction are formed on a substrate. Ones of the gate structures extend in a second direction that is substantially perpendicular to the first direction. The substrate includes active regions and field regions alternately and repeatedly formed in the second direction. The insulation layer pattern is formed between the gate structures and has a second air gap therein. Each of the isolation structures extending in the first direction and having a first air gap between the gate structures, the insulation layer pattern, and the isolation structure is formed on the substrate in each field region.
Abstract:
A method of manufacturing a semiconductor device, including forming a plurality of gate structures on a substrate, the gate structures each including a hard mask pattern stacked on a gate conductive pattern, forming an insulating layer pattern between the gate structures at least partially exposing a top surface of the hard mask pattern, forming a trench that exposes at least a top surface of the gate conductive pattern by selectively removing the hard mask pattern, and forming a silicide layer on the exposed gate conductive pattern.
Abstract:
A non-volatile memory device and a method of manufacturing the non-volatile memory device are disclosed. The non-volatile memory device includes a substrate, at least two gate structures on the substrate, and at least one impurity region in portions of the substrate between the at least two gate structures. The center of the at least one impurity region is horizontally offset from the center of a region between the at least two gate structures.
Abstract:
In one embodiment, the semiconductor memory device includes a semiconductor substrate having projecting portions, a tunnel insulation layer formed over at least one of the projecting semiconductor substrate portions, and a floating gate structure disposed over the tunnel insulation layer. An upper portion of the floating gate structure is wider than a lower portion of the floating gate structure, and the lower portion of the floating gate structure has a width less than a width of the tunnel insulating layer. First insulation layer portions are formed in the semiconductor substrate and project from the semiconductor substrate such that the floating gate structure is disposed between the projecting first insulation layer portions. A dielectric layer is formed over the first insulation layer portions and the floating gate structure, and a control gate is formed over the dielectric layer.