Abstract:
A CMOS image sensor and method of manufacturing the same are provided. In one embodiment, the CMOS image sensor includes: an interlayer dielectric layer formed on a semiconductor substrate including a plurality of photodiodes and transistors; a plurality of color filter isolation layers formed on the interlayer dielectric layer; a color filter layer comprising a first color filter, a second color filter, and a third color filter formed on the interlayer dielectric layer, wherein a portion of the first color filter and a portion of the second color filter are formed on one of the plurality of color filter isolation layers, and wherein a portion of the second color filter and a portion of the third color filter are formed on another of the plurality of color filter isolation layers; and microlenses formed on the color filter layer.
Abstract:
A method for fabricating a CMOS image sensor includes: forming a gate electrode on a pixel region of the semiconductor substrate and, at the same time, forming a polysilicon pattern on a middle resistor region; forming a first lightly doped n-type diffusion region on the photodiode region; forming a second lightly doped n-type diffusion region on the transistor region; consecutively forming first and second insulating layers on the entire surface of the semiconductor substrate; removing a predetermined portion of the second insulation layer on the transistor region and the middle resistor region; forming a third insulation layer on the entire surface of the semiconductor substrate; forming sidewalls of the first insulating layer and the third insulating layer on the gate electrode and the polysilicon pattern by performing an etch-back process; and heavily doping n-type impurities in the transistor region and the polysilicon pattern.
Abstract:
Disclosed is a floating gate of a flash memory device, wherein a tunneling oxide layer is formed on a semiconductor substrate, and a floating gate is formed in the shape of a lens having a convex top surface.
Abstract:
Disclosed is a method for manufacturing a capacitor in a semiconductor device. A method consistent with the present invention includes forming a lower electrode on a semiconductor substrate; forming a first interlevel dielectric layer on an entire surface of the semiconductor substrate, covering the lower electrode; selectively removing the first interlevel dielectric layer to form an opening exposing a surface of the lower electrode; sequentially forming a dielectric layer and a conductive layer over the entire surface of the semiconductor substrate including the opening; planarizing the conductive layer to form an upper electrode in the opening; and forming a second interlevel dielectric layer over the entire surface of the semiconductor substrate including the upper electrode.
Abstract:
An apparatus that can effectively operate in high temperatures including a CMOS image sensor, a thermoelectric semiconductor formed under the CMOS image sensor for selectively cooling the image sensor and a heat sink formed under the thermoelectric semiconductor.
Abstract:
The present invention provides an image sensor, and methods of manufacturing the same, that includes a color filter layer on a semiconductor substrate, and a microlens array on the color filter layer, in which the microlens includes a transparent conductive layer.
Abstract:
An image sensor and a fabricating method thereof are provided. The image sensor includes a plurality of pixels disposed in an active region and dummy pixels disposed in a peripheral region. An interlayer dielectric layer has a first thickness in the active region and a second thickness thinner than the first thickness in the peripheral region. Color filters are disposed in the active region, and a light blocking member is disposed in the peripheral region. There is substantially no step difference between the color filters and the light blocking member.
Abstract:
A CMOS image sensor and a manufacturing method thereof are disclosed. The gates of the transistors are formed in an active region of a unit pixel, and at the same time, a passivation layer is formed on an edge portion of the active region of a photodiode to have the same laminate structure as the gates of the transistors. Impurities for a diffusion region of the photodiode are ion-implanted into the active region for the photodiode, after the laminate structure is formed. The passivation layer prevents the edge portion from being damaged by ion implantation at the boundary or interface between the photodiode diffusion region and an isolation layer, which reduces dark current and/or leakage current of the CMOS image sensor.
Abstract:
Methods of fabricating nonvolatile memory devices are disclosed. A disclosed method comprises forming a trench isolation layer on a substrate; forming an oxide layer and a polysilicon layer; forming a sacrificial layer on the polysilicon layer; forming a photoresist pattern on the sacrificial layer; performing an etching process using the photoresist pattern as a mask and, at the same time, attaching polymers on sidewalls of the etched sacrificial layer to form polymer layers, the polymers being generated from the etching of the sacrificial layer; and forming a floating gate and a tunnel oxide by removing part of the polysilicon layer and the oxide layer using the polymer layers and the photoresist pattern as a mask. The disclosed method can increase the width of a floating gate by using polymer layers in fabricating a two-bit type cell, thereby ensuring a higher coupling ratio compared to the coupling ratio of a conventional two-bit type cell.
Abstract:
A CMOS image sensor includes a first conductive type semiconductor substrate having an active region and a device isolation region, a device isolation film formed in the device isolation region of the semiconductor substrate, a second conductive type diffusion region formed in the active region of the semiconductor substrate, and an ion implantation prevention layer formed in the vicinity of the device isolation film, including a boundary portion between the device isolation film and the second conductive type diffusion region.