Abstract:
A method and apparatus is claimed for measuring the distance between a slider and a transparent disk with sub-nanometer resolution. The flying height is measured by applying ellipsometry. The measurement is done by: providing a sampling light beam with adjustable initial polarization state by phase modulation, and with variable incident angles relative to the air film and reflecting the sampling light off of the specimen at a detection site forming a reflected light beam that is then reflected at the detection site again and then guided to both detectors for detecting the intensity and phase change of the light beam to determine the gap's thickness as well as passing some light to a microscope used for observation of the detecting site on the specimen.
Abstract:
A light beam polarization converter converts non-polarized light beams of an illumination source having a plurality of polarization states into a single polarization state. The light beams from the bottom converged by the lower surface of the under plate and further parallelized by the upper surface thereof enter the converter. After a series of optical processes of polarization splitting, reflection or total reflection, and phase retardation within the converter, the light beams will pass through the converter as light beams of a single polarization state.
Abstract:
A data recording disk drive includes acceleration rate sensing for controlling or modifying one or more disk drive operations in response to external shock or vibration. An acceleration rate sensor is mounted on the disk drive housing and provides direct detection of acceleration rate of the disk drive when subjected to external shock or vibration. The sensor includes two spaced-apart piezoelectric transducers that operate in current mode. The transducers are connected to an interface circuit that generates two voltage signals that are directly proportional to the angular and linear acceleration rates, respectively, when the disk drive is subjected to an external force. The disk drive microcontroller uses the voltage signals to inhibit writing of data or modify the servo control signal to maintain the heads on track during track seeking or following. The microcontroller can also combine the two signals to determine the acceleration rate of an unbalanced rotary actuator, which can then be used to modify the servo control signal. This permits the use of an unbalanced rotary actuator, which makes the disk drive smaller and lighter and reduces power consumption.
Abstract:
An actuator and a method for using the same are provided. The actuator includes a flexible element and a photoelectric layer. The flexible element includes an elastic layer or a piezoelectric layer. The photoelectric layer is disposed on a side of the flexible element. An electrical characteristic of the photoelectric layer is determined according to an irradiation condition of the photoelectric layer.
Abstract:
The invention discloses a novel compound effective in inactivating viruses and bacteria. The compound, 2-(10-mercaptodecyl)-propanedioic acid or salts thereof, is shown to disrupt, break down or inactivate viruses and bacteria, thus suppressing infection and proliferation thereof in host cells. A method of chemically synthesizing the novel compound is also disclosed.
Abstract:
An electret diaphragm and a speaker using the same are provided. The electret diaphragm includes an electret layer, a bonding layer adhered to a surface of the electret layer, and an aluminum (Al) electrode layer adhered on the bonding layer. The electret layer at least includes ethylene group polymer. A material of the bonding layer is ethylene-ethyl-acrylate (EEA) or ethylene-vinyl acetate (EVA).
Abstract:
A solar battery unit is proposed, including: a first electrode; a nano rough layer formed on the first electrode; a semiconductor active layer formed on the nano rough layer; and a second electrode formed on the semiconductor active layer, thereby enabling the nano rough layer formed on the first electrode to fully absorb solar energy not completely absorbed by the semiconductor active layer so as to allow solar energy to be fed back to the semiconductor active layer with a view to maximizing absorption of solar energy.
Abstract:
The invention provides an organic solar cell, including: a substrate having a first electrode formed thereon; a hole transport layer overlying the first electrode; a metal layer having a first pattern in the hole transport layer; a photoactive layer, including: a first organic semiconductor film having a second pattern complementary to the first pattern and overlying the metal layer and the hole transport layer; a second organic semiconductor film having a first pattern substantially aligned to the first pattern of the metal layer and overlying the first organic semiconductor film, wherein the first organic semiconductor film and the second organic semiconductor film have opposite conductive types; a second electrode overlying the photoactive layer. The invention further provides a method for forming the organic solar cell.
Abstract:
A micro patch coating device includes a coating die with a micro channel structure. A coating fluid is supplied through a coating fluid inlet and an auxiliary fluid is supplied through an auxiliary fluid inlet. After a segment of a predetermined length of the coating fluid is formed at a two-phase fluid output section, the coating fluid flow is intercepted. In turn, a segment of predetermined length of the auxiliary fluid is formed at the two-phase fluid output section, and then the auxiliary fluid flow is intercepted. A two-phase fluid is formed and flows out of the coating die to the substrate to form micro patches thereon.
Abstract:
A surface plasmon resonance meter is provided, including a backlight module, a line-slot plate, a parabolic mirror, a linear polarizer, a sensing chip, a prism and a photo detector array. The line-slot plate includes a light outlet. A light beam travels in the backlight module, and leaves the backlight module through the light outlet. The position of the line-slot plate is matched on a predetermined focal point of the parabolic mirror. The light beam is reflected by the parabolic mirror to be a parallel light beam, and travels trough the linear polarizer to the prism. The prism includes a light entering surface, a detection surface and a light exiting surface. The light beam enters the prism through the light entering surface, contacts the sensing chip with total internal reflection, and finally leaves the prism through the light exiting surface to be received by the photo detector array.