摘要:
An output buffering circuit of a driver device for a display includes a first amplifier circuit having a first input stage, coupled between an upper power supply and a lower power supply, and a first output stage, coupled between the upper power supply and a first intermediate power supply that is greater than the lower power supply, and a second amplifier circuit having a second input stage coupled between the upper power supply and the lower power supply, and a second output stage coupled between a second intermediate power supply that is lower than the upper power supply and the lower power supply.
摘要:
An OLED display and pixel circuit thereof are provided. The pixel circuit includes first and second switches, first and second PMOS transistors, a capacitor and an OLED. The first switch, controlled by a first scan signal, has a first end receiving a data signal and a second end. The second switch, controlled by a second scan signal, has a third end coupled to the second end and a fourth end. The first PMOS transistor has a source coupled to a high voltage, a drain coupled to the fourth end and a gate coupled to the second end. The second PMOS transistor has a gate coupled to the second end and a source coupled to the high voltage. The capacitor is coupled to the gate of the first PMOS transistor and the high voltage. The OLED has a positive end coupled to a drain of the second PMOS transistor.
摘要:
The present invention discloses an apparatus for driving a display in which each pixels of the display receives a driving voltage and a common voltage, and a luminance of each pixel is determined by a difference between the received driving voltage and the common voltage. The apparatus comprises a plurality of source driver chips, each of which receives a pixel value and generates the driving voltage corresponding to the pixel value according to a plurality of Gamma voltages. The common voltage is generated by at least one of the source driver chips.
摘要:
The present invention discloses an apparatus for driving a display in which each pixels of the display receives a driving voltage and a common voltage, and a luminance of each pixel is determined by a difference between the received driving voltage and the common voltage. The apparatus comprises a plurality of source driver chips, each of which receives a pixel value and generates the driving voltage corresponding to the pixel value according to a plurality of Gamma voltages, wherein at least one of the Gamma voltages is generated by one of the source driver chips.
摘要:
A data driver has several gamma-voltage generating circuits and several driving channels. The gamma-voltage generating circuits are used to process gamma-voltages of different colors. Each two groups of the driving channels are correspondingly coupled with the gamma-voltage generating circuit that generates a single color and is separately disposed at either side of the corresponding gamma generating circuit for outputting the gamma-voltages of the same color to a display panel.
摘要:
A display and an operating method thereof are provided. The display includes a display panel, a timing controller, and a plurality of source drivers. The source drivers are coupled to the timing controller and the display panel, and the source drivers are coupled to one another. The timing controller outputs a plurality of training packets to the source drivers. When the source drivers lock a clock of the timing controller according to the training packets, a lock signal is output to the timing controller. The timing controller outputs a plurality of color data packets and at least one latch signal to the source drivers based on the lock signal. The source drivers respectively output a plurality of pixel voltages to the display panel according to the latch signal. The training packets and the color data packets are serially transmitted to the source drivers.
摘要:
A source driver adapted to drive a display panel is provided herein. The source driver includes a first output buffer, a detection module and a conversion module. The first output buffer enhances a first pixel signal and thereby outputs a first enhanced pixel signal. The detection module detects a rise time of the first enhanced pixel signal. The conversion module adjusts a driving capability of the first output buffer in response to the rise time for adjusting a slew rate of the first output buffer. Therefore, the first output buffer in the source driver can dynamically and automatically adjusts the slew rate of the first output buffer through a feedback mechanism composed of the detection module and the conversion module.
摘要:
An embodiment of a slew-rate enhancement output stage is disclosed. A first slew-rate enhancement circuit receives a first control voltage and outputs a first voltage. A second slew-rate enhancement circuit receives a second control voltage and outputs a second voltage. A first PMOS transistor includes a first first terminal coupled to a high voltage source, a first control terminal receiving the first voltage, and a first second terminal coupled to a voltage output terminal. A first NMOS transistor includes a second first terminal coupled to the voltage output terminal, a second control terminal for receiving the second voltage, and a second second terminal coupled to a low voltage source. The first voltage is higher than the first control voltage, and the second voltage is lower than the second control voltage.
摘要:
A wafer, a test system thereof, a test method thereof and a test device thereof are provided. The present invention utilizes a first group of probes to perform a high voltage stress (HVS) test on a first chip, and utilizes a second group of probes to perform a function test on a second chip, where a period of the high voltage stress test overlaps a period of the function test, thereby greatly decreasing the test time of the wafer.
摘要:
An integrated circuit includes a current mirror circuit for providing a current at an output end, a power-down switch coupled to the output end of the current mirror circuit for controlling access of the current generated by the current mirror circuit based on signals received at a control end of the power-down switch, and a compensating unit coupled to a bias end of the current mirror circuit and the power-down switch for stabilizing voltages at the bias end of the current mirror circuit.