Abstract:
An optical device includes an optical grating coupler and a plurality of optical waveguides coupled thereto. The optical grating coupler is formed along a planar surface of a substrate, and includes a pattern formed by ridges concentrically located on the surface about a center thereon. Each adjacent pair of ridges is separated by a groove. Each waveguide of the plurality of waveguides is oriented about radially with respect to the center, and has a first end that terminates near an outermost one of the ridges. The first ends are about uniformly spaced along the outermost one of the ridges.
Abstract:
One aspect provides an optical device. The optical device includes a first and a second array of optical couplers, a plurality of waveguides and a plurality of pump couplers located over a surface of a substrate. The optical couplers of the first array are able to end-couple in a one-to-one manner to the optical cores of a first multi-core fiber having an end facing and adjacent to the first array and the surface. The optical couplers of the second array are able to end-couple in a one-to-one manner to optical cores having ends facing and adjacent to the second array. The plurality of optical waveguides connects in a one-to-one manner the optical couplers of the first array to the optical couplers of the second array. Each optical waveguide has a pump coupler connected thereto between the ends of the waveguide.
Abstract:
An optical device includes an input/output optical coupler, a waveguide and a waveguide fragment. The optical coupler is configured to separate a received optical signal into first and second signal components. The waveguide is connected to the optical coupler and configured to propagate the first signal component via a first propagation mode. The waveguide fragment is located adjacent to the first waveguide and is configured to couple light from the first waveguide that propagates therein by a different second propagation mode.
Abstract:
One aspect provides an optical device. The optical device includes a first and a second array of optical couplers, a plurality of waveguides and a plurality of pump couplers located over a surface of a substrate. The optical couplers of the first array are able to end-couple in a one-to-one manner to the optical cores of a first multi-core fiber having an end facing and adjacent to the first array and the surface. The optical couplers of the second array are able to end-couple in a one-to-one manner to optical cores having ends facing and adjacent to the second array. The plurality of optical waveguides connects in a one-to-one manner the optical couplers of the first array to the optical couplers of the second array. Each optical waveguide has a pump coupler connected thereto between the ends of the waveguide.
Abstract:
Duobinary and NRZ modulation of an X-Gb/s optical signal is achieved with a lumped element InP Mach-Zehnder device configured to operate at X/k-Gb/s where k>1 and arranged in a push-pull configuration.
Abstract:
A polarization-diverse optical amplifier includes a polarization-sensitive optically active medium and a polarization splitter. The polarization splitter is configured to receive input light, to direct a first polarization component of the received input light to a first optical path segment, and to direct a second polarization component of the received input light to a separate second optical path segment. The active medium has first and second optical ports. The first optical port is at an end of the first optical path segment. The second port is at an end of the second optical path segment. The active medium outputs amplified light from one of the ports in response to receiving the input light at the other of the ports. In a preferred embodiment, the active medium has an internal optical axis, and the polarizations of the first and second components are oriented relative to that axis so that amplification is enhanced. The two optical path segments may include polarization-maintaining optical waveguides.
Abstract:
A colorless tunable optical dispersion compensator (TODC) comprising a silica arrayed-waveguide grating (AWG) directly coupled to a polymer thermo-optic lens. As a result of its inventive construction, the device exhibits low loss, large tuning range, low electrical consumption and is readily manufactured using standard processes. Additionally, the TODC is fully solid-state and scales to a large figure-of-merit (dispersion range times bandwidth squared).
Abstract:
A mode-locked laser that has an optical cavity containing multiple optical amplifiers, each dedicated to a respective spectral portion of an optical signal generated by the laser, wherein the dispersion effects are managed by utilizing a separate intra-cavity phase tuner for each such spectral portion and/or by having appropriately configured waveguides corresponding to different spectral portions. Advantageously, a relatively wide combined gain spectrum provided by the optical amplifiers and the intra-cavity dispersion compensation provided by the phase tuners and/or waveguides enable this laser to realize a mode-locking regime that results in the emission of an optical pulse train having a relatively wide frequency spectrum. In one embodiment, the optical cavity of the mode-locked laser has a perfectly spectrally sampled arrayed waveguide grating (AWG) that is configured to divide the optical signal into the spectral portions and apply these portions to the respective waveguides, optical amplifiers, and phase tuners.