Abstract:
A lens apparatus is disclosed that can include at least one piece of optical film comprising two or more major edges, a front light-emitting side, a back light-receiving side and four corner regions, each having one or more associated minor edges defining one or more corner cuts that define a corner cutout. The lens apparatus may also include an edge truss configured on the two or more major edges, wherein each edge truss may be disposed towards the back light-receiving side of the at least one piece of optical film. Each edge truss may include one or more sides configured from a corresponding fold in the at least one piece of optical film, wherein at least one of the one or more sides of each edge truss may be configured to impart support to the lens apparatus and to resist deflection of each edge truss.
Abstract:
Certain example implementations of the disclosed technology include a light emitting device. The light emitting device may include an enclosure with four sides and a top edge surface associated with each of the four sides. The enclosure may be capable of mounting on a grid frame of a suspended ceiling such that a portion of the top edge surfaces contacts a portion of the grid frame. The light emitting device may further include a light modifying element characterized by a substrate with four or more edges, a back surface disposed on the top edge surface of each of the four sides of the enclosure, and a front surface. In certain example embodiments the substrate may further comprise two or more edge trusses. A periphery of the light-emitting front surface may be capable of contacting the grid frame after the light emitting device is mounted to the grid frame.
Abstract:
Certain example implementations of the disclosed technology include a light emitting device. The light emitting device may include an enclosure with four sides and a top edge surface associated with each of the four sides. The enclosure may be capable of mounting on a grid frame of a suspended ceiling such that a portion of the top edge surfaces contacts a portion of the grid frame. The light emitting device may further include a light modifying element characterized by a substrate with four or more edges, a back surface disposed on the top edge surface of each of the four sides of the enclosure, and a front surface. In certain example embodiments the substrate may further comprise two or more edge trusses. A periphery of the light-emitting front surface may be capable of contacting the grid frame after the light emitting device is mounted to the grid frame.
Abstract:
According to one implementation of the disclosed technology, a lens is provided. The lens includes one or more pieces of optical film configured for attaching to and modifying light from a light emitting device. The one or more pieces of optical film define: a lens aperture; a front light-emitting side of the lens; a back light-receiving side of the lens; and two or more edge trusses. The edge trusses are disposed towards the back light-receiving side of the lens. Each of the two or more edge trusses include one or more sides configured from a corresponding fold in the one or more optical films, wherein at least one of the one or more sides of each of the two or more edge trusses is configured at an angle relative to the lens aperture plane to impart support to the lens and to resist deflection of each edge truss.
Abstract:
An unmanned guided vehicle that is at least twice as fast as those of the prior art, lighter, less vulnerable, and more reliable than the prior art having at least one of: a dual-action dogleg suspension system; a track system comprising a plurality of cleats, a rubber insert secured to each cleat, and two cables serially joining each cleat to make up a track; a track guide system comprising a shark fin secured to each cleat that runs through a plurality of track guides; a dry clutch and braking system; a tubular chassis comprising a tubular center chassis and a tubular suspension chassis; a spring-loaded piston track tension compensator system; a flat drive tooth drive sprocket system that allows for clearing foreign debris from between the teeth; and a suspension carrier modular design assembly system comprising a passenger side suspension carrier, center cage, and driver's side suspension carrier.
Abstract:
The present invention is directed to a novel organic peanut butter formulation and method for production. The peanut butter includes an organic palm oil stabilizing agent that reduces or prevents separation of oils from the peanut butter during storage. Peanut butter incorporating the palm oil, methods for manufacturing the peanut butter, and foods incorporating the peanut butter are also disclosed.
Abstract:
An RF receiver comprises a signal processor arranged to perform a method of decoding data contained within a signal that comprises a set of slots, at least one said slot comprising a preamble portion and a payload portion and being transmitted at a predetermined transmission frequency. The signal processor is arranged to perform a first process to derive timing data from the preamble portion and perform a second process to extract information from the payload portion, the second process being triggered from said timing data derived from the first process. The preamble portion comprises at least a first sequence of data and a second sequence of data, and the second sequence is the inverse of the first sequence. In preferred embodiments the first process comprises identifying a transition between said first and second sequences of data and deriving said timing data from the identified transition.
Abstract:
The data transmitted from a first station is transmitted at a first data rate. The data transmitted from a second station is transmitted at a second data rate. The second data rate is lower than the first data rate. In view of both the difference in data rates and the synchronization between radio stations, a separate synchronization word is not required to be sent from the second station to the first station on the uplink portion; instead, and because the uplink slots of a given frame are synchronized between transceiving stations, the start of the uplink payload slot can comprise signalling information which simply acts to signify the start of transmission of uplink data from the second station.
Abstract:
A vehicle locating unit with improved power management. A receiver receives a signal from a network of communication sources. A signal strength monitoring subsystem determines which of the communication sources are transmitting the strongest signals. A power management subsystem is responsive to the signal strength monitoring subsystem and is configured to alternatively enter sleep and wake-up modes, synchronize the wake-up mode to the communication source transmitting the strongest signal, and test the signal strength of at least one additional communication source according to a predefined sequence.
Abstract:
A modular plant growing system may comprise two or more substantially vertical light panels, wherein each substantially vertical light panel may comprise one or more LED light engines. A support base may be attached directly or indirectly to each vertical light panel, wherein the support bases may be configured to engage with bottom surfaces of plant growing containers. Optional one or more top reflection panels may be configured to be disposed above the two or more substantially vertical light panels, the one or more top reflection panels may comprise reflection material and at least one ventilation opening. A plant growing space may be provided in the space defined by the two or more substantially vertical light panels and the one or more optional top reflection panels.