Abstract:
An emissions system for reducing nitrogen oxides in engine exhaust includes an emissions catalyst having an inlet adapted to receive an exhaust from the engine. A fuel tank is adapted to provide fuel for combustion within the engine. A first injector is operable to inject fuel into the exhaust upstream of the catalyst. A second injector is operable to inject supplemental reductant from a supplemental reductant tank into the exhaust upstream of the catalyst. A controller is operable to control the first and second injectors and vary the supply of fuel and supplemental reductant into the exhaust to reduce nitrogen oxides within the exhaust.
Abstract:
A manufacturing quality control system for monitoring the proximity of a workpiece to a machine tool is disclosed. The system includes a proximity sensor attached to the machine tool for deriving a first distance measurement based upon the distance between the workpiece and the machine tool. A wireless transmitter generates a radio frequency signal including the first distance measurement. A remote data processing device communicates with the wireless transmitter to retrieve the first distance measurement and display various derivations of sensor data.
Abstract:
A GPS enabled timepiece. A timepiece in accordance with the present invention comprises a GPS receiver, wherein the GPS receiver is modified to operate in a timekeeping environment, a timepiece, coupled to the GPS receiver, wherein the GPS receiver provides time updates to the timepiece, and a display, coupled to the timepiece, wherein the GPS-updated time of the timepiece is displayed.
Abstract:
A communications system (1) includes a plurality of nodes (2). Each node (2) has receiving means for receiving a signal transmitted by wireless transmitting means; transmitting means for wireless transmission of a signal; and, means for determining if a signal received by said node (2) includes information for another node (2) and causing a signal including said information to be transmitted by said transmitting means to another node (2) if said received signal includes information for another node (2). Each node (2) has one or more substantially unidirectional point-to-point wireless transmission links (3). At least some of the nodes (2) have plural substantially unidirectional point-to-point wireless transmission links (3). Each of said links (3) is to one other node (2) only. The links (3) are arranged such that at least some of the nodes (2) are not linked only to the nearest neighbor node(s) (2).
Abstract:
A communications system (1) includes a plurality of nodes (2). Each node (2) has receiving means for receiving a signal transmitted by wireless transmitting means; transmitting means for wireless transmission of a signal; and, means for determining if a signal received by said node (2) includes information for another node (2) and causing a signal including said information to be transmitted by said transmitting means to another node (2) if said received signal includes information for another node (2). Each node (2) has one or more substantially unidirectional point-to-point wireless transmission links (3). At least some of the nodes (2) have plural substantially unidirectional point-to-point wireless transmission links (3). Each of said links (3) is to one other node only (2). Each node (2) is arranged such that transmission or reception of a signal at any particular frequency by a node (2) takes place on only one link (3) at a time.
Abstract:
A support structure (10) for supporting a plurality of antennas (11) has a plurality of antenna supports (13) each for supporting at least one antenna (11). Each antenna support (13) is supported for rotation about an axis of rotation. At least one antenna support (13) is selectively rotatable with respect to the or each other antenna support (13) such that an antenna (11) supported by said at least one antenna support (13) rotates therewith.
Abstract:
Embodiments of the present technique relate to forming die stacks. Specifically, embodiments of the present technique include a method of forming and testing semiconductor die comprising forming a die stack of at least two semiconductor die without attaching either of the at least two semiconductor die to a substrate. Further, present embodiments include testing the semiconductor die in the die stack after the die stack is formed and prior to attaching either of the at least two semiconductor die to the substrate.
Abstract:
Methods for thinning a bumped semiconductor wafer, as well as methods for producing flip-chips of very thin profiles, are disclosed. According to the methods of the present invention, a mold compound is interspersed between conductive bumps on the active face of a wafer to provide support and protection for the wafer structure both during and after a process of removing the wafer's inactive back side silicon surface. The mold compound also serves to preserve the integrity of the conductively bumped aspects of the wafer during subsequent processing and may, after the wafer is diced, act as all or part of an underfill material for flip-chip applications.
Abstract:
A communications system (1) has a plurality of nodes (2). Each node (2) has a receiver (10) for receiving a signal transmitted by wireless transmitting means and a transmitter (11) for wireless transmission of a signal. Each code (2) further has means for determining if a signal received by said node (2) includes information for another node and causing a signal including said information to be transmitted by said transmitting means to another node if said signal includes information for anode node. Each node (2) has a substantially unidirectional point-to-point wireless transmission link (3) to at least one other node. The communications system (1) has high spectral efficiency compared to a broadcast cellular system and allows high data transfer rates to be achieved.
Abstract:
A system for treating exhaust of an internal combustion engine having an exhaust recirculation system and a turbocharger includes an exhaust passageway adapted to receive exhaust from the engine. A heat exchanger is adapted to be positioned within the exhaust gas recirculation system. A pressurized air supply system includes a conduit containing pressurized air and extending within the heat exchanger. A regeneration unit for combusting a fuel and heating the exhaust flowing through the exhaust passageway is supplied air from the air supply system that has been heated by the heat exchanger. An exhaust treatment device is positioned downstream from the regeneration unit in receipt of the heated exhaust.