Abstract:
The present invention is directed to novel polypeptides having sequence similarity to Stra6, a murine retinoic acid responsive protein, and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides having sequence similarity to Stra6, a murine retinoic acid responsive protein, and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
A member of the guanylate-binding protein family, designated GBP-4, is provided. Also provided are isolated nucleic acid encoding GBP-4, vectors and host cells containing such nucleic acid molecule, and a method for producing the GBP-4 recombinantly.
Abstract:
An isolated polypeptide comprising an amino acid sequence having at least 80% sequence identity to the sequence SEQ ID NOS:2, 4, 6 or 8, polynucleotides encoding these peptides, and antibodies to the polypeptides are useful in treating cancers.
Abstract translation:包含与序列SEQ ID NO:2,4,6或8具有至少80%序列同一性的氨基酸序列的分离的多肽,编码这些肽的多核苷酸和针对该多肽的抗体可用于治疗癌症。
Abstract:
A member of the guanylate-binding protein family, designated GBP-4, is provided. Also provided are isolated nucleic acid encoding GBP-4, vectors and host cells containing such nucleic acid molecule, and a method for producing the GBP-4 recombinantly.
Abstract:
A member of the guanylate-binding protein family, designated GBP-4, is provided. Also provided are isolated nucleic acid encoding GBP-4, vectors and host cells containing such nucleic acid molecule, and a method for producing the GBP-4 recombinantly.
Abstract:
Tissue plasminogen activators (t-PAs) and derivatives thereof are produced in useful quantities using recombinant DNA techniques. Specific derivatives include amino acid deletion derivatives and amino acid substitution derivatives. A deletion derivative lacking the N-terminal first 68 amino acids is specifically exemplified having requisite t-PA characteristics. The invention disclosed thus enables the production of t-PAs and derivatives thereof via recombinant means. Methods, expression vehicles and various host cells useful in the production of said t-PAs and derivatives thereof are also disclosed.
Abstract:
Isolated CHF, isolated DNA encoding cardiac hypertrophy factor (CHF), and recombinant or synthetic methods of preparing CHF are disclosed. These CHF molecules are shown to influence hypertrophic activity and neurological activity. Accordingly, these compounds or their antagonists may be used for treatment of heart failure, arrhythmic disorders, inotropic disorders, and neurological disorders.
Abstract:
Isolated CHF, isolated DNA encoding CHF, and recombinant or synthetic methods of preparing CHF are disclosed, These CHF molecules are shown to influence hypertrophic activity and neurological activity. Accordingly, these compounds or their antagonists may be used for treatment of heart failure, arrhythmic disorders, inotropic disorders, and neurological disorders.
Abstract:
Wnt-1-Induced Secreted Proteins (WISPs) are provided, whose genes are induced at least by Wnt-1. Also provided are nucleic acid molecules encoding those polypeptides, as well as vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides, and methods for producing the polypeptides.