摘要:
The disclosure relates to a method of manufacturing a polarization-modulating optical element, wherein the element causes, for light passing through the element and due to stress-induced birefringence, a distribution of retardation between orthogonal states of polarization, the method comprising joining a first component and a second component, wherein a non-plane surface of the first component being provided with a defined height profile is joined with a plane surface of the second component, whereby a mechanical stress causing the stress-induced birefringence is produced in the such formed polarization-modulating optical element.
摘要:
A method of determining materials of lenses contained in an optical system of a projection exposure apparatus is described. First, for each lens of a plurality of the lenses, a susceptibility factor KLT/LH is determined. This factor is a measure of the susceptibility of the respective lens to deteriorations caused by at least one of lifetime effects and lens heating effects. Then a birefringent fluoride crystal is selected as a material for each lens for which the susceptibility factor KLT/LH is above a predetermined threshold. Theses lenses are assigned to a first set of lenses. For these lenses, measures are determined for reducing adverse effects caused by birefringence inherent to the fluoride crystals.
摘要:
The disclosure relates to a microlithographic projection exposure apparatus, such as are used for the production of large-scale integrated electrical circuits and other microstructured components. The disclosure relates in particular to coatings of optical elements in order to increase or reduce the reflectivity.
摘要:
The disclosure relates to an optical projection arrangement that can be used to image a reticle onto a substrate. The projection arrangement includes reflective elements, by which a ray path is defined. A combination stop is in a pupil of the ray path. The combination stop has a first opening (aperture opening) for use as an aperture stop. The combination stop also has a second opening for allowing passage of a ray bundle of the ray path, such that the combination stop acts as a combined aperture stop and stray light stop. In addition, the disclosure relates to a corresponding combination stop for optical arrangements, as well as related systems, components and methods.
摘要:
The disclosure provides projection objectives which may be used in a microlithographic projection exposure apparatus to expose a radiation-sensitive substrate arranged in the region of an image surface of the projection objective with at least one image of a pattern of a mask arranged in the region of an object surface of the projection objective. The disclosure also provides projection exposure apparatus which include such projection objectives, as well as related components and methods.
摘要:
The disclosure relates to an optical projection arrangement that can be used to image a reticle onto a substrate. The projection arrangement includes reflective elements, by which a ray path is defined. A combination stop is in a pupil of the ray path. The combination stop has a first opening (aperture opening) for use as an aperture stop. The combination stop also has a second opening for allowing passage of a ray bundle of the ray path, such that the combination stop acts as a combined aperture stop and stray light stop. In addition, the disclosure relates to a corresponding combination stop for optical arrangements, as well as related systems, components and methods.
摘要:
In an exposure method for exposing a substrate which is arranged in the area of an image plane of a projection objective as well as in a projection exposure system for performing that method, output radiation directed at the substrate and having an output polarization state is produced. Through variable adjustment of the output polarization state with the aid of at least one polarization manipulation device, the output polarization state can be formed to approach a nominal output polarization state. The polarization manipulation can be performed in a control loop on the basis of polarization-optical measuring data.
摘要:
A projection objective with obscurated pupil for microlithography has a first optical surface, which has a first region provided for application of useful light, and at least one second optical surface, which has a second region provided for application of useful light. A beam envelope of the useful light extends between the first region and the second region. At least one tube open on the input side and on the output side in the light propagation direction severs to screen scattered light. The at least one tube is between the first optical surface and the second optical surface. The wall of the tube is opaque in the wavelength range of the useful light. The tube extends in the propagation direction of the useful light over at least a partial length of the beam envelope and circumferentially surrounds the beam envelope.
摘要:
The invention features a system for microlithography that includes a mercury light source configured to emit radiation at multiple mercury emission lines, a projection objective positioned to receive radiation emitted by the mercury light source, and a stage configured to position a wafer relative to the projection objective. During operation, the projection objective directs radiation from the light source to the wafer, where the radiation at the wafer includes energy from more than one of the emission lines. Optical lens systems for use in said projection objective comprise four lens groups, each having two lenses comprising silica, the first and second lens groups on one hand and the third and fourth lens groups on the other hand are positioned symmetrically with respect to a plane perpendicular to the optical axis of said lens system.
摘要:
A projection objective for use in microlithography, a microlithography projection exposure apparatus with a projection objective, a microlithographic manufacturing method for microstructured components, and a component manufactured under the manufacturing method are disclosed.