Abstract:
This invention, in general, relates to the field of telecommunications. More particularly, the present invention relates to a centralized system and method for providing customized applications for mobile networks enhanced logic CAMEL roaming services to a mobile subscriber. The CAMEL HUB configured to process a request from the mobile subscriber to avail one or more mobile services from a visited network operator. The mobile subscriber device has a subscription to a home network operator and operates in a home CAMEL phase. The visited network operator operates in a visited CAMEL phase. The CAMEL HUB is also configured to allow the mobile subscriber device to avail the one or more mobile services seamlessly from the visited network operator independent of the visited CAMEL phase. The home CAMEL phase may or may not be different from the visited CAMEL phase.
Abstract:
A semiconductor process for improved etch control in which an anisotropic selective etch is used to better control the shape and depth of trenches formed within a semiconductor material. The etchants exhibit preferential etching along at least one of the crystallographic directions, but exhibit an etch rate that is much slower in a second crystallographic direction. As such, one dimension of the etching process is time controlled, a second dimension of the etching process is self-aligned using sidewall spacers of the gate stack, and a third dimension of the etching process is inherently controlled by the selective etch phenomenon of the selective etchant along the second crystallographic direction. A deeper trench is implemented by first forming a lightly doped drain (LDD) region under the gate stack and using the sidewall spacers in combination with the LDD regions to deepen the trenches formed within the semiconductor material.
Abstract:
The present invention relates to a additive composition for use as lubricity improver for low sulphur diesel, comprising c) 0.1-10% by weight of ester derivative derived from cashew nut shell liquid (CNSL esters) of formula (I); f) 0.1-10% by weight of ester derivative derived from cashew nut shell liquid of formula (II); g) 50-95% by weight of free fatty acid of the formula RCOOH in which R represents an alkyl/alkenyl group with 12 to 24 carbon atoms. h) 1-30% by weight of synthetic esters derived by esterifying tri, tetra, penta hydric alcohols with carboxylic acids such as lauric, palmitic, linoleic, ricinoleic etc.
Abstract:
A method and apparatus for dynamically, adaptively and/or concurrently enhancing and diminishing of colors in digital video images is disclosed. In one embodiment, a method includes dynamically computing a saturation gain, adaptive to slow or fast moving image sequences, for each user chosen color of a substantially current video frame, dynamically computing a saturation dependent value gains, adaptive to slow or fast moving image sequences, for each user chosen color of the substantially current video frame, determining which of the dynamically computed saturation gain and a saturation dependent value gains associated with each user chosen color or no gain is to be applied on a per-pixel basis by comparing Hue, saturation and value (HSV) components of each pixel with predefined HSV ranges of various user chosen colors, respectively, and applying the determined saturation and/or saturation dependent value gain on the per-pixel basis, in the substantially current or next video frame.
Abstract:
Methods and systems for automatically generating a mask delineating a region of interest (ROI) within an image containing skin are disclosed. The image may be of an anatomical area containing skin, such as the face, neck, chest, shoulders, arms or hands, among others, or may be of portions of such areas, such as the cheek, forehead, or nose, among others. The mask that is generated is based on the locations of anatomical features or landmarks in the image, such as the eyes, nose, eyebrows and lips, which can vary from subject to subject and image to image. As such, masks can be adapted to individual subjects and to different images of the same subjects, while delineating anatomically standardized ROIs, thereby facilitating standardized, reproducible skin analysis over multiple subjects and/or over multiple images of each subject. Moreover, the masks can be limited to skin regions that include uniformly illuminated portions of skin while excluding skin regions in shadow or hot-spot areas that would otherwise provide erroneous feature analysis results. Methods and systems are also disclosed for automatically registering a skin mask delineating a skin ROI in a first image captured in one imaging modality (e.g., standard white light, UV light, polarized light, multi-spectral absorption or fluorescence imaging, etc.) onto a second image of the ROI captured in the same or another imaging modality. Such registration can be done using linear as well as non-linear spatial transformation techniques.
Abstract:
The present invention relates to a package of screening methods for developing drugs against pathogenic microbes having two-component system of DevR-DevS and/or DevR-Rv2027c and its homologues, said method comprising steps of over-expressing DevR, DevS, and Rv2027c and their single domain derivatives including mutant variant proteins, autophosphorylating DevS, and Rv2027c proteins and thereafter, phosphotransfering to DevR and its derivatives in SDS-PAGE or High-throughput format in the presence of a test compound, and determining the drug-potential of the test compound, wherein the potential of the drug is inversely proportional to (i) the degree of autophosphorylation of DevS and Rv2027c, (ii). the degree of phosphotransfer-based dephosphorylation of DevR and/its single domain derivative, and (iii). the degree of dephosphorylation of phosphorylated species of DevS and Rv2027c and/their single domain derivatives, and a method of treatment, and a composition thereof.
Abstract:
The present disclosure relates to mapping, tracking, and distributing policy to client devices. Policy, in particular lists of policy assignments are sent to client devices. A determination is made as to the changes or deltas between policy assignments that have been sent to client devices and policy assignments that must be sent to client devices. Identifying the delta policy assignments avoids the need be sent to client devices. Identifying the delta policy assignments avoids the need to send policy assignments that have not change and do not need to be sent to client devices. A server computer determines applicability of policy assignments to particular client devices, tracks if and when policy assignments have been deleted and allows the client to either receive a partial list of policy assignments that are required to update policy or a full list of policy assignments. Full, partial or not list policy assignment depends when a particular client device was last provided a policy assignment.
Abstract:
A field-effect transistor (“FET”) or similar device has a fully silicided (“FUSI”) gate electrode. The gate electrode has a gate interface silicide portion between the gate dielectric and a bulk gate silicide portion. The gate interface silicide is formed by depositing a gate electrode interface layer having silicide retardation species underneath the metal/silicon layers used to form the gate silicide. The gate electrode interface layer retards silicide formation at the gate dielectric/gate electrode interface when the bulk gate silicide is formed, and the gate interface silicide is then formed at a higher temperature or longer heat cycle time.
Abstract:
Recesses are formed in the drain and source regions of an MOS transistor. An ohmic contact layer is formed in the recesses, and a stressed silicon-nitride layer is formed over the ohmic contact layer. The recesses allow the stressed silicon nitride layer to provide strain in the plane of the channel region. In a particular embodiment, a tensile silicon nitride layer is formed over recesses of an NMOS transistor in a CMOS cell, and a compressive silicon nitride layer is formed over recesses of a PMOS transistor in the CMOS cell. In a particular embodiment the stressed silicon nitride layer(s) is a chemical etch stop layer.
Abstract:
A process for the preparation of CNSL phenoxy carboxylic acid derivatives for use as an additive in a lubricant composition so as to impart improved rust inhibiting properties, including the steps of (a) partially hydrogenating distilled technical cashew nut shell liquid with palladium or nickel or platinum catalyst; to hydrogenate the olefinic chain; (b) reacting cashew nut shell liquid or partially hydrogenated technical cashew nut shell liquid with halogeno carboxylic acid derivatives to obtain unpolymerized cashew nut shell liquid phenoxy carboxylic acid derivatives, the reaction being carried out at a temperature ranging from 20 to 140° C. A lubricant containing a major proportion of a material selected from the group consisting of an oil of lubricating viscosity and a grease; and remainder an additive including CNSL phenoxy carboxylic acid derivative prepared by the foregoing process.